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GALATIA CLEANTHOUS

ON THE PROPERTIES OF MULTIVARIATE ISOTROPIC RANDOM
FIELDS ON THE BALL

We consider multivariate isotropic random fields on the ball B¢. We first study their
regularity properties in terms of Sobolev spaces. We further derive conditions guar-
anteeing the Holder continuity of their covariance kernels and we prove the existence
of sample Hélder continuous modifications for Gaussian random fields. Furthermore,
we measure the error of truncated approximations of the corresponding series’ rep-
resentations. Moreover our developments are supported by numerical experiments.
The majority of our results are new for multivariate random fields indexed over other
domains, too. We express some of them for the case of the sphere.

1. INTRODUCTION

A plenty of phenomena in Astrophysics, Geology, Environmental Science, Meteorology
and other scientific areas can be interpreted by random fields. As a random field we refer
to a family of random variables indexed over a domain which may represent space, time
or any other dependence of interest. Random fields indexed over the sphere are extremely
well studied in Probability and Spatial Statistics, because of their strong connection with
CMB (Cosmic Microwave Background Radiation) and other phenomena in the above
mentioned research fields; see indicatively [2, 5, 7, 10, 13, 16, 19, 27, 33, 36]. Today
Probability and Statistics community has well-establish the corresponding theory on the
sphere, hypersphere and more general manifolds.

Moreover, the exploration of more than one phenomena jointly distributed and cor-
related, can be aligned with the study of multivariate random fields. For some relevant
literature we refer to [2, 28, 29, 30].

Going one step ahead, applications for instance in Oncology, Embryology, Geology,
Mineralogy and Seismology may demand the exploration of the interior of the sphere
—the ball— rather than the spherical surface itself. The need for studying random fields
on the ball is straightforward, in the perspective of both applications and theory, and it
is commonly expected that in the next few years significant attention of the community
will be focused on this framework.

Random fields on the ball have just very recently been considered and drastic progress
has been made in the two papers [25, 26]. To be more precise, the covariance matrix of
such a m-variate isotropic random field, depends only on the distance between the index
points lying on the ball, via a covariance kernel matrix-valued function. In [25] general
series’ forms of random fields have been considered and expression of their covariance
kernels has been extracted. we will see more details in Section 2. In [26] we can find
a number of developments on the spectral theory of random fields on the ball, together
with future research directions in the area. As it has already been observed, the study
on the ball may be substantially more involved than on the sphere or other homogeneous
spaces and demands careful handling [21, 37].

The research trajectory that has been drawn in [24] on the sphere and in [20] on more
general manifolds, is the expression of the regularity and continuity of random fields in
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terms of their covariance kernels. Moreover, it ends up that all the stochastic information
is contained in the spectrum coefficients of the random field; with the prevailing terminol-
ogy (coming from the Astrophysics) as the “angular power spectrum”. Nonparametric
conditions in the spectrum determine the regularity and the existence of modifications
of the random field which are (more than) continuous. These two comprehensive arti-
cles have deeply inspired the communities of Probability and Statistics; see for instance
[2, 3, 6, 8, 11, 12, 13, 14, 22] and the references therein.

In the present paper we consider m-variate isotropic random fields on the ball and
explore a number of their properties such as regularity, continuity and modifications. All
these problems are addressed here for the first time in the multivariate set-up. More-
over, our conditions are nonparametric and can cover under their umbrella a large class
of random fields. Furthermore, we approximate the random fields by sequences of ran-
dom fields suitable for simulations, obtaining sharp errors. Our study is supported by
simulations illustrating our outcomes.

The study of random fields in the ball is very young and promising. Here we explore
problems in the spirit of [20, 24], while we expand some reasonable research directions
at the end of the paper.

Let us summarize the contributions of our paper:

(o) We study the regularity of the covariance matrix kernel of m-variate isotropic
random fields, in terms of Sobolev spaces adapted to matrix-valued functions (Theorem
3.1). Precisely we express the Sobolev norm of the covariance kernel via the weighted
£2-norm of their spectrum matrix-sequence.

(8) We illustrate the notion of regularity by numerical experiments in Section 4.

() We provide ¢*-conditions on the spectrum matrix-sequence of m-variate isotropic
random fields, which guarantee the Holder continuity of their covariance kernel (Theorem
5.1). We compare the findings with the Sobolev regularity in Corollary 5.2.

(6) We study the sample Holder continuity of Gaussian random fields (see Theorem
6.1) and we derive a Kolmogorov-Chentsov-type result (Theorem 6.3).

(e) We approximate m-variate isotropic random fields by truncations of their series’
representation, under £°°-nonparametric assumptions. We estimate the error both in the
sense of mixed-Lebesgue norms and P-almost surely (Theorem 7.1).

Note further that our study of regularity and continuity properties, as in (a), ()
and (9) is the first of its kind on the multivariate framework. To this end we prove
such theorems for multivariate random fields on the sphere (see Theorems 8.1 and 8.2).
Furthermore, all our results are new for the case of univariate random fields on the ball.

The plan of the paper is as follows. In Section 2, we revise all the necessary background
on multivariate random fields on the ball. Section 3 is dedicated to the study of the
regularity properties of the random field via its covariance kernel. The findings are
supported by simulation experiments placed in Section 4. The continuity study appears in
Section 5. Modifications of multivariate random fields is the objective of the sixth Section,
while in the seventh Section, we approximate random fields by truncated expansions and
estimate the error. Regularity and continuity properties of spherical random fields can
be found in Section 8. Section 9 contains overall discussions on this paper and future
directions. All the proofs and some information about simulations are placed in the
Appendix.

Notation. Let us fix here some necessary notation. We denote by N, Ng the sets of
positive and non-negative integers respectively and by R the space of real numbers. Let
m € N. The space R™ will contain all the m-dimension vectors and the space R™*™
all the m x m matrices with real entries. The identity of the last space is denoted
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by I,,. Vectors and matrices will be denoted by bold lower case and capital letters
respectively. The notation a ~ b will indicate that there exists a constant ¢ > 1 such
that ¢7'b < a < ¢b. By ¢ we will denote a positive number who is independent of the
main parameters in an equation and may vary from appearance to another. When we
want to highlight that it depends on some precise parameter ¢, we will state it as c¢,.
Finally, for every real number # we denote by

(1.1) ()4 := max(z,0).

2. RANDOM FIELDS ON THE BALL
Let d € N such that d > 2 and let us denote by
BY={xe€R?:|x|| <1} the unit ball of R? and

St = {y e R |yl = 1} the unit hypersphere of R+,
Then every point x € B¢ can be uniquely mapped to
y= y(x) = (X, 1- ||XH2) € S[Jiﬂ

where Si = {y = (Y1, Yds1) €S%: yay1 > 0} the upper hypersphere of R4+,
The distance p(x1,x2) between two points x1,Xs € B? is defined as the spherical
distance between their images y1,y2 € ST, gsa(y1,y2). Precisely

(2.2) p(x1,X2) := arccos (X'1X2 + \/1 — ||x1||2\/1 — ||x2\|2)
(2.3) = arccos(y|y2) =: 0sa(y1,y2)-

Note that the above distance is invariant under orthogonal matrix transformations.

A m-variate random field {Z(x) : x € B?}, is a collection of random vectors of R™,
indexed over the ball BY. Precisely let (2, F,P) be a probability space and Z : B¢ x Q —
R™ a vector valued function. Then for every x € B¢ and w € Q,

Z(x,w) = (Z1(x,w), .. .,Zm(x,w))/

is a random vector.
The random field {Z(x) : x € B?}, is called isotropic when it has finite second-order
moments, zero mean;
E(Z(x)) =0, for every x € B?
and its covariance matrix function depends only on the distance p(x1,xs2), between x;

and x2. This means that there exist matrix-valued functions Cy : [0, 7] — R™*™ and
C:[-1,1] — R™*™ such that

cov(Z(xl), Z(XQ)) =: Co(p(xl,xQ))
: C(cos (p(xl,xQ))), for every x1,xo € B%.

(2.4)

The matrix-valued function C will be referred as the covariance kernel of the isotropic
random field Z and we will see that it is of fundamental importance for the study of its
properties. Of course the covariance of an isotropic m-variate random field on the ball, is
again invariant under transformations by orthogonal matrices. Note that the zero-mean
assumption can be equally replaced by a constant mean and has been considered just for
simplicity.

The random field {Z(x) : x € B?} will be referred as mean square continuous when
for every k=1,...,m,

(2.5) ]E(’Zk(xl) — Zk(X2)|2) — 0, when p(x1,%x2) = 0.
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2.1. Gegenbauer polynomials. It is well known that orthogonal polynomials play a
key role in the study of random fields. As a standard reference, see [35]. Let A > 0. The

Gegenbauer polynomials {P,({\)(u) :n € No} are the coefficients of w™ of the power series
expansion of

(2.6) (1 —2uw +w?) ™ = Z PM(w)yw™, |w| <1, uecR.
n=0

For A = 0 we define P\” (cos®) := cos(nh), n € Ny (the Chebyshev polynomials).
There are strong similarities between the cases A > 0 and A = 0, but also some differences.
We have unified everything in Section 8 of [3] and we summarize below the properties
necessary for our study.

These polynomials form an orthogonal basis for the space of the square integrable

functions on [—1, 1], with respect to the weight (1 — uz))"%. Precisely
1
(2.7) / P () PN (u) (1 = )2 du ~ G (n+ 1)1
-1
22 -2, 2>0
(2.8) where #()) = A
0, A=0

where 0 is the classical Kronecker’s delta. For every n € Ny, the function PT(L)‘) is a
polynomial of degree n. Let us list some fundamental properties of these polynomials
below.

The polynomials (restricted to [—1,1]), mazimize in u = 1 and behave as follows:

(29) mas [P (w)] = PY(1) ~ (n+ 1),
u€[—1,1]

recall the notation in (1.1).
Let v € N. The behaviour of their derivatives is as follows:

d’ y
(2.10) Tu7 PN (u) = n(\n, V)P,,(I):Z )(u), for every n > v,

where the auxiliary function n above behaves as below (see [3] for the details)

(n+1), A=0

, foreveryn>v>0.
1, A>0

(2.11) n(\,n,v) ~ {

The last combined with (2.7) implies that the derivatives { d” PT(LA)}n>u form an

du?

orthogonal basis of the square integrable functions in [—1,1] equipped with the weight
(1 +u2))‘+l/_%.

Finally Funk-Hecke formula asserts that for every n,k € Ny and y,ys € S%

(451 sy ) (o 891 525y (o
(2.12) g P, (ylu)Pk (y2u)du = 5nka—2Pn (ylyg)7
where |[S?| the total area of the sphere S? and
2 d—1
(213) Cli = %, n e NO.
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2.2. Series representation. In [25, Theorem 1] Lu, Leonenko and Ma, study m-variate
random fields on the ball, satisfying a series’ representation as in (2.16). They prove
that these random fields are isotropic and provide the corresponding expression for their
covariance kernel. Precisely:

Let {V, : n € Ny} be a sequence of independent m-variate random vectors with zero
mean and covariance given by

(2.14) cov(V, V) = aZ1,,.

Let U be a (d + 1)-valued random vector uniformly distributed on the hypersphere
S?, which is independent of {V,},.

Let {B, : n € Ny} a sequence of positive definite matrices on R™*™ such that the
series of matrices

e d—1
(2.15) Z BnPT(LT)(l) to be convergent on R™*™.

n=0

Then the m-variate random field

(2.16) Z(x) = Z BéVnPfldz;l)(cos (0sa(y,U))), x€B?, wherey = y(x),
n=0

has zero mean, is isotropic on B¢ and its covariance kernel with the notation as in (2.4)
is given by

(2.17) C(u) = iBHPfL%)(u), wel-1,1].
n=0

1 1,1

Note that above, B2 is the matrix of R™*™ such that B2 (Bﬁ)/ = B,,, which exists
by the positive definitness of B,,. The convergence in (2.15) should be understood in the
coordinate wise sense and it is equivalent with

(2.18) Z B,(n+1)2+  converges on R™*™,

n=0

in the light of (2.9) and with the notation as in (1.1). It further guarantees the uniform
convergence of C by a matrix-valued version of M-Weierstrass test and (2.9), (2.17).

For “increasing the stochasticity” of the m-variate random field, we use the following
variant of the above.

Proposition 2.1. Let {V,}, and {B,}, as above. Let also {U,, : n € Nyo} be sequence
of independent (d + 1)-valued random vectors uniformly distributed on the hypersphere
S?, which are independent of {Vi}x. Then the random field

(2.19) Z(x) = Z Bn%VnPy(L%)(cos (QSd (v, Un))), x € B, wherey = y(x),

n=0
has zero mean, is isotropic on B¢ and its covariance kernel as in (2.4) is given by (2.17).

The proof follows the lines of the one of [25, Theorem 1]; we skip the details.

For justifying the above variant we simulate univariate random fields on the ball B3
for a certain sequence B, = (n + 1)72 and normal V,,’s. In both cases the ball B® has
been partially presented —just the first quarter of it— and then rotated for illustrating
better the random phenomena. We will consider both cases during the current work,
since both lead to the same covariance kernel (2.17).
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FIGURE 1. Left: simulated illustration of a random field as in (2.16).
Right: simulated illustration of a random field as in (2.19).

2.3. Covariance expression. On the other hand, let {Z(x)} be a m-variate isotropic
random field which is mean square continuous. Then by [25, Theorem 2], the covariance
kernel as in (2.4), takes the form

e d—2
(2.20) Cu) =Y B, 7 (u), wel-1,1],
n=0
where (B,,) a sequence of positive definite matrices such that
g p(4E2)
(2.21) Z B,P, 2 ’(1) converges on R™*™,
n=0

Remark 2.2. A few remarks are in order.

(1) As the reader has already noted, the covariance kernels in (2.17) and (2.20),
present a different index in the Gegenbauer polynomials. We refer to [25] for a
discussion about it. We continue this discussion in Section 9.

(2) The convergence in (2.21) indicates the fundamental importance of the behaviour
of the matriz-sequence (By,).

Let us illustrate the notion of isotropy. The covariance cov(Z(x1),Z(x2)) depends
only on the distance between the points x; and xs via the kernel C as in (2.4) and this
is what we aim to present in the next plots. Consider a univariate isotropic random field
{Z(x)} on the ball B® with B, = (n + 1)~3, visualized in Section 2.2. We fix xo = 0
and we draw the covariance cov(Z(x), Z(0)) : B3> — R: where on the left we present the

FiGURE 2. Illustration of isotropy.

first quarter of the ball rotated as before and on the right we visualize the covariance for
23 = 0. Note that the plots are obtained by truncating the sequence in (2.17) using the
terms from n = 0 to n = 100. Simple arguments can show that the true covariance as in
(2.17) differs from the truncation presented above not more than 10~%.
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3. REGULARITY

In this section we will explore the regularity properties of m-variate isotropic random
fields on the ball. We need a proper definition of regularity first. The notion of regularity
use to be expressed in terms of the norms of regularity (or smoothness) spaces; Sobolev,
Besov spaces, etc. The classical approach is to study the regularity of the covariance
function (or kernel). It has been recently spotted that this is completely accurate [20]
(at least for univariate random fields).

For the case of the sphere, regularity has been studied in detail in [24] and pioneered
the progress in the area. For random fields on more general manifolds and products of
manifolds see for example [12, 13].

Although, there is not any relevant result on the ball. Moreover, there is not any
similar progress in the multivariate set-up. Our first result is dedicated to this two-fold
purpose; study the regularity properties on random fields which are: (i) multivariate and
(ii) indexed on the ball.

The multivariate setting demands some careful adaptation of the notions of integra-
bility and regularity. We will see some Lebesgue and Sobolev spaces for matrix-valued
functions. We present here the following definitions.

Let A and B be two R™** matrices, m,k € N. Their Frobenius inner product is
defined as

(3.22) (A,B)p = trace(AB’).

The corresponding Frobenius norm ||A||r of A takes the form

k m
(3.23) IAl: = (A A)p=> > (Ay)>

j=11i=1

Let A > 0 and m € N. We say that the matrix valued function C : [-1,1] — R™*™
belongs to the (weighted) Lebesgue space L%A'm) when

1
(3.24) (ST /_1 IC@(1 = w2 du < oo.

Let also s € Ng. We define the Sobolev space W(s)\,m) as the set of all matrix-valued
functions C : [-1,1] — R™>*™ such that

(825 Iy, = 2Nl <o

(A+vim)

Above C™ should be considered in the coordinate-wise sense. Note that the above
Sobolev spaces are the natural matrix-valued version of the spaces used in [37]. To the
best of our knowledge, this is the first time such matrix-valued regularity spaces are used
for the study of random fields.

Finally, a simple but important property is the following

(3.26) Liximy = Winm) 2 Wikim) 2 Wiy 2 -+

We are ready to present our regularity results. We start by a general Theorem:

Theorem 3.1. Let A > 0, s € Ny and a matriz-valued function C : [—1,1] — R™™ of
the form

(3.27) C(u) = i B,PMN (), wel-1,1],
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where (By,) a sequence of positive definite matrices such that
o0

(3.28) Z B,PWM(1)  converges on R™X™,
n=0

Then C belongs to the Sobolev space W(SA;m) if and only if

(3.29) S B3 (0 + 12N < .
n=0
Precisely,
2 = 2 s
(3.30) ||C||W(SML) ~ ;} |Bun]| o (n 4 1)2 T,

Note that the auxiliary function t(A) has been presented in (2.8).

The proof of Theorem 3.1, as every other proof, has been delivered to the Appendix for
streamlining the exposition of our study. Simulation studies illustrating the notion of
regularity can be found in Section 4. We turn now to translate the general regularity
Theorem in the language of random fields on the ball.

Corollary 3.2. Let {Z(x) X € Bd} be a m-variate isotropic mean square continuous

random field on the ball B and s € Ng. Then its covariance kernel C, expressed as in
(2.20), belongs to the Sobolev space Wsﬁ_m) if and only if
2

d—2 ;m)

(3.31) S Bafn+ 124 < oo,
n=0
Precisely,
(32 IOl ~ S IBl o+ 1ess

2 n=0

For the explicit series expansions of random fields in (2.16) and (2.19), the regularity
is summarized in the following;:

Corollary 3.3. Let {Z(x) : x € B} be a m-variate random field on the ball BY, as in
(2.16) or (2.19) and let s € Ng. Then its covariance kernel C, in (2.17), belongs to the
Sobolev space W¥,_, ) if and only if

z M

oo
(3.33) ST B0+ 132573 < oo,
n=0
Precisely,
2 - 2 o
(3.34) HCHW(S’#1 ~ Z |Bnl|(n+ 1)d+2s-3

m)

2 n=0

Note that Theorem 3.1 in the abstract formed expressed above can be used for the
study of multivariate random fields on the sphere, too. For streamlining our presentation
we have placed the study of the sphere in Section 8.
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4. SIMULATION STUDY

Let us support our regularity results by some simulations. We will use the series
representations (2.19):

Z(x) =S BiV, PV (yU,), A="— y=yx).

n=0
Assume that the spectrum sequence (B,,) is such that
(4.35) HBnHF ~(n+1)7% for some o > 0.

For having a proper covariance kernel we need o > d — 1; see (2.21).
Let s € Ng. By Theorem 3.3 the corresponding covariance kernel

(4.36) CEW(S%;m)<:>8<Oé+1—C§l.

We will illustrate random fields enjoying different regularity levels on the unit disk B2
and the unit ball B? in the univariate and bivariate case (m € {1,2}). Technical details
appear in the Appendix.

We simulate first scalar random fields; m = 1.

We start by the case of the unit disk B? (d = 2). Then % = % and the Gegenbauer
polynomials correspond to Legendre ones. In our experiments the random variables V,,
are assumed to be Gaussian with V,, ~ N (0,2n + 1); see (2.13).

We consider the (univariate) random fields Z;, j = 1,...,4, of the form (2.19), with
BJ = (n+1)~% and take a; = 14 j for every j = 1,...,4. Then their covariance kernels
C; belong to W7\ WJ+! respectively (where W = (Sl;l))' We visualize Z;’s in Figure
4 and the difference on the regularity level becomes apf)arent:

S .|
% "\‘If £ “’\I‘
| —|

-
|

FIGURE 3. Z;, j =1,2,3,4, from the top left to the bottom right.

We proceed to the case of the unit ball B® (d = 3). Then %31 =1 and Var(V,,) = n+1;
see (2.13).

We consider the (univariate) random fields Z;, j = 1,...,4, of the form (2.19), with
Vo~ N(O,n+1), Bl =(n+1)"% and take o =2+ j, j =1,...,4.

Then their covariance kernels C; belong to WItL\ Wi+?2 respectively (where W* =
W(yy). We visualize Zj’s in Figure 4.

We now turn to the main interest of this study which is the case of multivariate
random fields. It suffices to focus on the bivariate case; m = 2. Consider Z = (21, Z3)’
a bivariate isotropic random field on B? expressed as in (2.19). Let r = cor(Z;, Zy).
We will illustrate such random fields for several values of regularity level and correlation
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FI1GURE 4. Note that we have truncated the unit ball presenting the
first quarter of it and then we rotated for better illustration. Moving
from top left to bottom right (Z1,...,Z4), we can observe the increase
of the level of regularity that the kernels enjoy.

between the coordinate random fields on B? and B®. Precise details are available in
Section 10.

Let us study first the case of the disk B2. We provide initially random fields whose co-
variance enjoys the membership in VV(ll 2) in Figure 4. In Figure 4 we illustrate smoother
3

e = |

Q.
v -
-7 I . 4

c o

FIGURE 5. In the first row we have very high negative correlation (here
r = —0.9) and in the second, high positive correlation (here r = 0.6).

random fields on W(i )"
3
We proceed to the case of the ball B3. We draw random fields on W(21;2) in Figure 4
and on W(41;1) in Figure 4.

5. HOLDER CONTINUITY

In this section we explore the Holder continuity of isotropic mean square continuous m-
variate random fields, expressed in terms of their covariance kernels. Holder continuity is
a way to measure the variation of the function in terms of the variation of its variable. A
stronger property than continuity. Here we study the Holder continuity in the covariance
kernel and in the next section we transfer this to the original random field; Theorem 6.1.
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O ©

FIGURE 6. First row: very high negative correlation (here r = —0.9).
Second row: very low positive correlation (here r = 0.28).

/T g //';“

FIGURE 7. Random fields on W(21;2). First row: very high negative

correlation (here r = —0.9) and second row: high negative correlation
(r=-0.6).

Our main aim is to obtain a Kolmogorov-Chentsov-type Theorem, (see Theorem 6.3).
Such an approach for univariate random fields appears in [24] and, later, in [12].
We need first to determine a way to deal with the continuity of matrix-valued functions.

Let 0 < 6 < 1. We say that a matrix-valued function C: [—1,1] — R™*™ is §-Hoélder
continuous when

ICw - @)

< .
u—1° >

(5.37) HCHH%Z sup HC(u)HF-i-SiIz

ue[—1,1]

We are now in place to obtain the Holder continuity of the covariance kernel of an
isotropic m-variate random field, based on the (weighted) summability of its coefficient
matrices (B,,). Precisely we prove the following:

Theorem 5.1. Let {Z(x) ' X € Bd} be a m-variate mean square continuous isotropic
random field on the ball B and 0 < 6 < 1. Then its covariance kernel C, expressed as
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/

A | /)\

Ficure 8. Random fields on W(41;2)' First row: very low (positive)

correlation (here r = 0.28) and second row: high positive correlation
(here = 0.9).

in (2.20), is -Hélder continuous provided that

(5.38) Z HBn||F(” + 1)25+(dfa)Jr < .
n=0
Moreover
(o]
(5-39) IC]ls <> |Bal p(n + 1) 2+,
" n=0

The proof of Theorem 5.1 appears in the Appendix. In Section 6 we will use the above
result for obtaining continuous modifications of multivariate isotropic random fields on
the ball. A more general statement about covariances as in (3.27) could be proved, but
we prefer to stick in the (special) case of our random fields.

5.1. Discussion on the H6lder and Sobolev regularities. A very natural question
here is how related can be our results in Sobolev regularity and Holder continuity. Note
that Theorem 3.1 is based on the (weighted) ¢2-behaviour of the coefficients (B,,) and
Theorem 5.1 on the (weighted) ¢!-behaviour of the same matrix-sequence. We express
the answer in the next corollary:

Corollary 5.2. Let {Z(x) tX € IB%d} be a m-variate mean square continuous isotropic
random field on the ball B¢ and let C be its covariance kernel expressed as in (2.20).
(a) Let s € Ny with s > % and assume that C is Sobolev regular of order s. Then
C, is 0-Hélder continuous for every 0 < 6 <1, such that 0 < § < %(s — %)
(b) Let 0 < § < 1 and assume that C enjoys (5.38). Then C is Sobolev reqular of

order s, for every s € Ny such that s < 26 + %.

6. MODIFICATIONS OF RANDOM FIELDS

In this Section we transfer the continuity study to the m-variate random field itself.
The main purpose of the Section is to arrive in a Kolmogorov-Chentsov-type Theorem;
a sufficient condition for the existence of Holder continuous modifications of multivariate
random fields on the ball.
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We start by giving some necessary definitions adapted to m-variate random fields on
the ball.

Let 0 < v < 1. We say that an m-variate random field {Z(x) : x € B?} is y-sample
Hélder continuous on the ball, when for every w € ), the vector-valued sample function
Z.,(x) = Z(x,w), x € B? is y-Hélder continuous in the sense that: There exists a
constant 0 < ¢ < oo such that

(6.40) HZ(x,w)HF <c and ||Z(x1,w) — Z(xz,w)HF < cp(x1,x%2)7,

for every x,x1,xo € BZ.

We say that the m-variate random field {Z(x) iX € IB%d} is locally v-Hélder continuous,
when for every x¢ € B¢, there exists a neighbourhood V (xg) of x¢, such that the restricted
random field {Z(x) : x € V(xq)} to be y-sample Holder continuous on V'(xg). That is
to satisfy (6.40), for every w € Q and every x,x1,X2 € V(xg).

Finally we say that the m-variate random field {Z(X) 1X € Bd} is a modification of
{Z(x) iX € Bd}, when P(Z(X) = Z(X)) =1, vx € B4

We can now prove the next result which expresses Holder continuity on the random
field by itself. Here we need to assume that the random field is Gaussian.

Theorem 6.1. Let {Z(x) 1X € Bd} be a Gaussian m-variate mean square continuous

isotropic random field on the ball B and 0 < 6 < 1. When the covariance kernel as in
(2.20) satisfies (5.38), then for every p € N

(6.41) IE(HZ(xl) - Z(xz)Hi,p) < ep(x1,%2)%P,  for every xi,%xy € BY.

Remark 6.2. On Theorem 6.1 we further assumed that Z is Gaussian. Technically, this
was necessary because of the need of the moments in (10.73). Let us emphasize that the
proof of such a result turns out to be much more involved than in the univariate case.
For univariate random fields on a very general class of manifolds we refer to [23].

The above result guarantees that small changes in the spatial domain, imply small
changes in the expectations of the distance between the corresponding values of the
original m-variate random field.

We are ready to prove a version of Kolmogorov-Chentsov Theorem for m-variate ran-
dom fields on the ball. Precisely we will show the following:

Theorem 6.3. Let {Z(x) 1X € IB%d} be a Gaussian m-variate mean square continuous

isotropic random field on the ball B and 0 < § < 1. When the covariance kernel as in
(2.20) satisfies (5.38), then there exists a modification {Z(x) : x € B} of Z which is
locally v-Hélder continuous, for every 0 < v < 4.

7. APPROXIMATION

We proceed to study truncated approximations of m-variate isotropic random fields.
As we recalled from [25] and we saw in Proposition 2.1, the random fields

> d—1
(7.42) Z(x) =3 BiV,P7 ) (y'U), y=y(x), xeB and
n=0
o d—1
(7.43) Z(x) = Z BéVnPT(LT) (Y'U,), y=y(x), xeB,
n=0

are isotropic on B?, under certain assumptions on the above matrices and random vectors.
Such expansions are suitable for truncation and have already been used successfully for
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simulations in Section 4. In the current Section we will rigorously justify the validity of
truncated fast approximation.
Let N € N. We define the truncated random field Zy, of Z in (7.42), as

(7.44) ZB2V i ( 'U), y=ylx), xcB?

and with the obvious modlﬁcatlons for the random field Z as in (7.43).

We will study the error of the natural approximation of Z by (Zy)y using mixed
Lebesgue norms, respecting the nature of a random field as a spatial function and random
variable.

Let p > 0. The LP(B% R™)-(quasi)norm of a vector-valued function f : B — R™ is
defined as

(7.45) Fls oy = ([ IEG0IEAG0) "

where du(x) the measure element on B.
The corresponding inner product of two vector-valued functions f, g : B* — R™, takes
the form:

(7.46) (£, )12 @am) = / (£ (x), 8(0)) pdpu().

Bd
Let also (2, F,P) be a probability space. The vector-valued function f : B? x Q — R™
belongs to the mixed Lebesgue space LP (Q, L4(B%; Rm)), p,q > 0, if

1/p
€120, agwazmy) = (BN uqgazn))

= ([ 1l Rmdm))w
(7.47) ( [ ([ ireoitanc ) qdwcu))l/pmo.

For the special case p = ¢ = 2 and thanks to Fubini-Tonelli Theorem we have
(7.48) ”f”%?(Q,L?(Bd;]R’")) = ]E(”f”%z(lﬂ%d;Rm)) = /Bd]E(”f(X)H%)dH(X)-

The approximation error estimation demands an £°°-condition for the spectrum matrix
sequence of the random field. Our approximation result is as follows:

Theorem 7.1. Let {Z(x) i X € Bd} be an isotropic random field on the ball B of the
form (2.16) or (2.19). Let € > 0 and assume that the sequence of matrices satisfies
(7.49) tmce(Bn) <en~E for every n > no,

for some ¢, > 0 and some ny € N.
Then the corresponding series of truncated random fields (ZN)N converges to the
random field Z in the following senses:
(a) In LP(2, L2(BR™)), for every p > 0 and there exists a constant ¢ > 0 such that
2
(7.50) 1Z - ZNHLP(Q,L?(]Bd rmy) S ENT i
(b) P-almost surely. Precisely the error is asymptotically bounded by
(7.51) |z - zN||L2(W;Rm) <N % P-as.,

for a < /2.
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Remark 7.2. Some remarks are in order.

(1) The mized Lebesgue (quasi-)norms used above are ideal for counting distance
between random fields. These involve the expectation since we deal with random
variables and count the total variability in the spatial domain using the standard
measurement via Lebesgue (quasi-)norms.

(2) Let us point out here that |B||p ~ trace(B), for every positive definite matriz
B. Therefore all Theorems 3.1, 5.1, 6.1 and 7.1 can be expressed equivalently in
terms of |By||r or trace(By,).

7.1. Connection with regularity and simulations. Let us connect the findings of
this Section with those in Sections 3 and 4. We restrict to the L?(Q2, L?(B%;m)). We
consider the matrix sequence B,, to be as in Section 4, that is

(7.52) |Bul|,=(n+1)~*, a>d-1

As we saw in Section 4 the random field Z, as in (2.16) or (2.19) with matrix sequence
(B,) as above enjoys membership in exactly all Sobolev spaces W(Sd;1 )’ with s <
3 im
a+1-— g.
On the other hand: By Cauchy-Schwartz inequality we derive

(7.53) trace(B,) < vVmn 17 e=a —(d—1) > 0.

A closer look in the proof of Theorem 7.1 asserts that the L2(Q, L?(B%;m))-error is
bounded from above by

1/4 _ a1
(7.54) m (d —1)p(B4) =
From all the above we can extract that: When the regularity level grows, then the
error decays exponentially. Consequently less and less terms (N) are needed for attaining
a satisfactory error bound. In the plots below we present the decay of the error when «
—and therefore the regularity— increases, for bivariate random field on B? on the left
and on B? on the right. The smoothness on the horizontal axis spans from the space W?!
to W* (for the proper values of «). The different colors represent the truncation index
N € {25,50,100}.

8. MULTIVARIATE RANDOM FIELDS ON THE SPHERE

Multivariate random fields on the sphere and more general compact manifolds have
received recently significant amount of attention; see for example [2, 16, 29, 30, 32] and
especially the works of Ma [28] and Ma and Malyarenko [31] for spheres and compact
two-point homogeneous spaces respectively. Although, regularity properties have not yet
been established for multivariate spherical random fields. Our abstract Theorem 3.1 will
be translated to the regularity theorem for such multivariate random fields on the sphere.
The same will happen with continuity Theorems 5.1, 6.1 and 6.3 too. For approximation
results and simulations, see [2].
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Let us first recall the following [28, 31]: Let {Z(y) : y € S%} be a m-variate isotropic
mean square continuous random field on the sphere S%. Then its covariance can be
expressed as cov(Z(yl), Z(yg)) = C(y’lyg), yv1,y2 € S%, for a covariance kernel matrix
valued function of the form

(8.55) Clu) = i B, PU7 (u), wel-1,1],
n=0

where {B,,} is a sequence of positive-definite m x m matrices such that the series

d—1
ZBnP,S 2 )(1) to be convergent.
The regularity of such random fields can be summarized in the following:

Theorem 8.1. Let {Z(y) : y € S?} be a m-variate isotropic mean square continuous
random field on the sphere S and s € Ng. The covariance kernel C as in (8.55) belongs
to the Sobolev space W(Sﬂ_m) if and only if

7

(8.56) Hc||§vsd ~ ST IBal3(n + 1)+ < .
(%1””) n=0
The proof of Theorem 8.1 is a direct application of the abstract Theorem 3.1; we skip
further details.
The continuity and modification properties for spherical random fields yield by the
weighted summability of (B,,),,. We modify properly the proofs of the results in Sections

5 and 6 and we summarize the outcome in the following:

Theorem 8.2. Let {Z(y) : y € S} be a Gaussian m-variate isotropic mean square
continuous random field on the sphere S% and 0 < § < 1. Assume that the covariance
kernel C as in (8.55) satisfies

(8.57) > IBullr(n + 1) 72 < oo,
n=0
Then
(a) The covariance kernel is §-Hélder continuous; C € H?, .
(b) For every p € N, there exists a constant ¢ = ¢, > 0 such that

E(Hz(yﬂ - Z(.Vz)Hip) < cpsaly1,y2)®, for every y1,y2 € S%.

(¢) There exists a modification {Z(y) 1y €S} of Z which is locally y-Hélder contin-
uous, for every 0 < v < 6.

9. FINAL REMARKS

Random fields on the ball are under-presented in the literature in comparison with the
case of the sphere. This happens in many other scientific areas, because of the increasing
difficulty that appears when studying the ball. The studies [25, 26] are the first two in
the area and contain fruitful information.

In the present paper we covered several problems; regularity, simulations, continuity,
modifications and approximations, while there are many natural directions for future
research in the very area of our study and beyond.

For example Interpolation spaces and Holder spaces for any order § > 0 can be used
as in [24] and [12]. The simulation studies we performed are sufficient for the purpose of
illustrating the notions of our interest. The study could be expanded by choosing more
families of the spectrum sequence based in the results and examples in [25, 26]. The
comprehensive study by Lang and Schwab [24] directly opens research directions, e.g.
SPDEs, while Bayesian analysis’ community may find some inspiration by [2, 9].
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In the current framework a fundamental issue would be to find a constructive example
of an isotropic random field on the ball, whose covariance agrees with the general ex-
pansion in (2.20). We continue this discussion from [25]. A random field as in (2.16) or
(2.19) enjoys a covariance as in (2.4). Then using the formula (8) of Askey and Wainger
[4], which goes back to Gegenbauer [18], we can arrive after some technical steps to the
following expansion:

(9.58) C) = - (3 Brasyasr +29) BT -
. = r42i;(r +24) ) Pr (u), wel[-1,1],
=0 =0
D(452) D (n—2j4 252 T (j+ 3T (n—j+ 252 n—2j
where a;(n) = == (r<d2;11>r<2%>)j!r(j<n—2g)'+(%> P~ e for some con-

stants depend only on d. The expansion (9.58) yields from the (8) in [4] after splitting
between even and odd orders, changing the raw of summation and changing the vari-
ables. We skip the details. An expansion in a “closed” form is still under question.
Let us add that the case of the interval B! = [—1,1], under general Jacobi-type weights
(1 — u)*(1 + u)? is not covered in theory so far. Investigating this seems to be very
interesting.

The most obvious direction of interest, which has been spotted also by Leonenko,
Malyarenko and Olenko [26], is the study of spatio-temporal random fields on the ball.
This would demand a comprehensive work for random fields on B¢ x R. More product
domains, such as B% x R%, B% x S% and B% x B9, could be important to be explored
too.

A grand challenge in multivariate random fields on the sphere, the ball or other man-
ifolds, is the correspondence between the regularity of the covariance and the random
field itself as Kerkyacharian, Ogawa, Petrushev and Picard did for the univariate case in
[20]. This is something that would demand significant background to be built first, like
regularity of vector-valued functions on manifolds and the necessary technology in the
area.

Finally, the master problem that the community aims to face, is the meaningful relax-
ation of the assumption of isotropy. Of course such an assumption is pretty acceptable
in the CMB framework, but may fail away from it.

DECLARATIONS

Funding: No funds, grants, or other support was received.

Conflict of interest: The author has no conflicts of interest to declare.

Ethics approval: Not applicable

Consent to participate: Not applicable

Consent for publication: Not applicable

Availability of data and materials: This manuscript was produced with no addi-
tional data.

Code availability: Code can be available after request.

e Authors’ contributions: Not applicable

10. APPENDIX

In this section we have delivered all the proofs of our results, together with some
details about simulations’ studies.

Proof of the results in Section 3. We start with the regularity results.

Proof. (Of Theorem 3.1). Let A >0 and 0 < v < s. Then
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(c®.c®) = 3 (Bu(P) B (P))

Otwim)  pni>0 Gtwim)

= Z 77()‘7n7V)n()‘7n/7V)<Bnprgity)7B”/P7§,f\j;)>L(2 )
o) Avim

= Z n(A\,n,v)n(\,n',v)trace(B, By, ) x

n,n’'>v

/ P )\+V) )\+Vl/) (U)(l _ u2)A+l/7%du

(10.59) ~ Z IB|2(n + 1)+

n=v

where above we used the expansion (2.20), the properties (2.10), (2.8) and (2.8) of Gegen-
bauer/Chebyshev polynomials and the definition (3.23) of the Frobenius norm.

Now we replace the above in (3.25) and derive that

2 . s 00 ) )
||CHW(S>\ - Z | C( HLz < CZ Z ||BnHF(n+ 1)? +t(A)

(Av;m) =0 n—v

c(s+1 Z HBnH;(n +1)2+N) < o0,
n=0

Conversely, by (3.25) and (10.59), we obtain

S lIBa|[ (0 + 12
n=0

= 7 [Balfpn+ D20 3 B[4 1)

n<s n=s
o] o]

< s Z ||Bn||§(n +1)'™ 4 Z ||Bn’|2F(n + 1)+t
n=0 n=s

<CZ||C”)||L2

(A vs

2

= CHCHW&;M)’

which completes the proof.

O

Proof. (Of Corollaries 3.2 and 3.3). We just apply Theorem 3.1 for A = % and A = %
respectively and noting that

d—2 d—4,d>3
(10.60) t( . ):{0 0,

O

Some information about simulations in Section 4. In Section 4 we presented

simulations experiments for visualizing multivariate isotropic random fields on the ball.
We are placing here some more details.
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For the case of the unit disk B2, we use a grid of size 500 x 500 for the polar coordinates’
domain rescaled on [0,1]2. Then we truncate to N = 100 terms the series in (2.19). The
orthogonal polynomials needed are available via the R-package “orthopolynom”. For
more see also the package “Rcosmos” [17]. Similarly for the 3D-unit ball B® we used a
grid of side £ = 200 for the spherical coordinates’ domain adapted to present only the
first octant of the ball. Then we rotated the plot for better implementation.

Let us put some more light on the bivariate random fields; m = 2. This time we
need a sequence (B,,) of positive definite 2 x 2 matrices. Let (b,,) a sequence of positive
numbers and —1 < r < 1. We define

1 r
(10.61) B, =0, <r 1) .

Then B, is positive definite, ||B,|lr = /2(1 4 r2)b, and r = cor(Z, Z3), where
(Z1,Z3)" = Z the random field as in (2.19). Moreover the square root of B, is as follows

(10.62) B: = /b, C \/1(177&) .

By entering the above square root in R directly, we “buy” some computational time,
which is a vital issue for allowing us to increase the grid size. Otherwise R can find
the square root with Cholesky decomposition too. The uniformly distributed U,, on the
sphere S? are extracted in the classical way: we simulate a (d + 1)-dimensional standard
normal and we normalize it by dividing with its vector norm.

Here we employed the sequence b,, = (n + 1)~# for several 8’s interplaying with the
regularity level and several values of r for expressing the correlation.

Proofs of the results in Section 5. We proceed to the Holder continuity results.

Proof. (Of Theorem 5.1). We denote by A = 42, By (2.20) we have the following:

(10.63) [|C(w)|| < > [Ball o[ PV ()] < D7 [Ba] | P2V (1)]

I A e Y L
n=0 n—0

for every u € [—1,1]; in the light of (2.9) and (5.38).

We proceed to the second term in (5.37). Let —1 < u # ¢ < 1. By (2.20) it turns out
that

(10.64) [Cu) = CW)||, <D 1Bl | P () = PV ()]

We will estimate |P7(1>‘)(u) - P,S)‘)(t)| in two ways and interpolate the outcomes.

By mean value Theorem, there is a £ between u and t such that

‘P(A) - pX )] = ‘(— (’\)>(§ ‘|u —t] < max ‘ PXM(r ’|u
re[-1,1] ldr
+1) ‘|u—t|

=n(A\n,1) max, ’
rel-

(10.65) <c(n+ 1)1 3>++2|u —,

in the light of the properties (2.10), (2.9) and (2.11) of Gegenbauer polynomials.
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On the other hand we can estimate the same quantity as follows

(066) [P - FOO] <2 max, [POG)] < eln+ 16D+
ue|—1,
We interpolate (10.65) and (10.66) for the given 0 < 6 < 1 and we arrive at

(10.67) |PV (u) — PN (@)] < e(n + 1) 3+ F20)y — 32,

The combination of (10.64) and (10.67) together with (10.63) and the assumption
(5.38) implies that

o
Cllng, < e 3 Bl n+ 12+ < o
n=0

Proof. (Of Corollary 5.2).

(a) Let 0 <6 < (s — 42) and

1 /d—2 d—2 1
Then by the Cauchy-Schwarz inequality we derive
€], < €D Bl (n+ 1=
n::o 1 & 2 d-2\\ 3
(S tae)’ (B ool )
S

(b) The claim follows by Corollary 3.2 and the standard inclusion ¢? < ¢! and exactly
because s + t(452) < 26 + (d — 3)4;

IClly., < ed[Bafpln+ 1=
n=0

<) |IBnfp(n+ 1) <o,

O

Proofs of the results in Section 6. We are ready to proof the Theorems stated in
Section 6.

Proof. (Of Theorem 6.1). Let x1,%x3 € BY. We denote by Wiy = Z(x;) — Z(x2). Then
E(ng) =0 and

COV(W12) = E(W12W12)

= E(Z(x1)Z(x1)') — E(Z(x1)Z(x2)')
— E(Z(x2)Z(x1)") + E(Z(x2)Z(x2)")
(10.68) = (C() C(cos(p(x1,X2)))) : 3o,

thanks to the isotropy assumption (2.4).
_1
Then the random vector Y = 3, > W5 is standard m-variate Gaussian; Y ~ N (0,1,)

_1
and by ¥, > we denoted the inverse of the square root of the positive definite matrix 3.
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By Cauchy-Schwarz inequality we can see that

1 p 1
(10.69) IWell = (I=5Y15)" < 231511

12p
We focus first on the term ||%¢ ||,
1

By (3.23), the fact that X¢ is the square root of the positive definite matrix 3¢ and
(10.68), we obtain

|2 Hi, = trace(Eg (Eg)/)
(10.70) = trace(X%) = 2trace<C(1) — C(cos(p(xl,xQ)))>.
Now given that C enjoys (5.38), we apply Theorem 6.1 and we derive
trace(C(l) - C(cos(p(xth)))) < ¢m||C(1) — C(cos(p(x1,%2))) ||F

< CHCHH% ’1 — cos(p(xl,xz))’(S
25

(10.71) < o|[C[5,5 px1,%2)*,

since |1 — cos(t)| < ct?, for t € [-1,1].
On the other hand we observe that ||Y||% = >/~ Y;2. Then

VI = () = X () e

k1 km=p

By the fact that Y is standard Gaussian, the Y; are independent to each other, there-
fore we extract that

p 1 m
E(||Y||2Fp) = Z (k1,...,km>E(Y12k )E(Yn%k )

kit tkm=p
_ P ] .
(10.72) = > (kl’ B km> H(Qki — D! =: ¢y,
ki+-t+km=p i=1

where we used the well known property for (univariate) standard normal distribution Y
that the even order moments satisfy

(10.73) E(Y? ) =2k —-1)!l=1-3---(2k —1).

Now (6.41) is a consequence of (10.69)-(10.72).
O

Proof. (Of Theorem 6.3). We will employ Theorem 1 from [34].

Let v < 6. Let p € N be such that the integer ¢ = 2p to satisfy % < 0 — 7. We denote
by 8 =0q—d. Then >0 and vy < 2.

By Theorem 6.1 for the integer p we have

E(HZ(Xl) - Z(Xz)HqF) < ep(x1,%2)" = ep(x1, x2) 7.

The last implies that there exists a modification {Z(x) tX € IB%d} of Z, which is locally
Holder continuous of order «y, because of the equivalence of the ball distance with the
standard Euclidean distance on R? (which can been derived as in [24]). O
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Proof of the results in Section 7. We can now present the proof of the approximation
Theorem 7.1:

Proof. In the proof we focus on the expansion (2.16) and the corresponding truncation
(7.44). The handling for the expansion (2.19) is completely similar.

(a) We start by proving (7.50) for p = 2. In this case the error on the left can be simply

expressed as in (7.48). Let N > ng. We denote for brevity £ = 4% and D,, = B2 By
(2.16) and (7.44) we derive

(Z(x) — Zn(x)), = Y trace(D,V,ViD}) P (y'U) P (y'U), vy =y(x).
n,k>N

This implies that
E(|Z - Zn[7) = Y trace(DaE(V,, V) D})
nk>N
(10.74) < E(P (y'U)P (y'U)),
by the independence of V,,, U.

Since {V,,} are independent and have zero mean and covariance given in (2.14), we
extract that

trace(D,E(V, V},)D}) = dutrace(D,E(V,, V;,)Dy,)
= §upaptrace(D,D},)
(10.75) = 0ppastrace(B,,)
Since U is uniformly distributed on S and y € S%, the identity (2.12) implies

E(P (y'U) P (y'U)) = & / PO (y'u) PO (y'u)du

(10.76) =a;2P"(1) ~ a;?nd2

thanks to the behaviour (2.9).
Combining (10.74)-(10.76) we have that the error has the form

(10.77) 12 = Zn ||} .2 50,5y, ~ 1B D trace(B
n>N

)

Replacing assumption (7.49) to (10.77) we arrive at

(10.78) 1Z - ZNHi%Q.Lz Bi;Rm)) = € Z ne< /
’ n>N N

—€
xlte S cN

)

which completes the proof of (a) for p = 2.

Let p < 2, therefore 2/p > 1. By Holder’s inequality for this index on the probability
measure and (10.78) we arrive at

HZ - ZNHLP(Q,L2(IBd;Rm)) = HZ - ZNHLZ(sz,Lz(Bd;Rm)) < eN“2

Let p > 2 and let v = v(p) be the (unique) integer such that 2(v — 1) < p < 2v. By
Holder’s inequality for the index 2v/p we obtain

(10.79) ||Z - ZNHLp(Q,L?(]Bd;Rm)) = HZ ZNHL?” Q,L2(B4;R™))”

We apply Corollary 2.17 of [15] deriving the existence of a constant ¢, > 0 such that

(1080) HZ - ZNHL?V(Q,LZ(]Bd;Rm)) < CVHZ - ZNHLQ(Q,LQ(Bd;]Rm))'
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Now we use (10.79), (10.80) and (10.75) to conclude that for every p > 2
—e/2
1Z — ZNHLF(Q,LQ(]Bd;Rm)) <c|z- ZNHL?(Q,L?(Bd;Rm)) < eNT2

which completes the proof of claim (a).

(b) Let 0 < a < £/2. We need to prove that

(10.81) P(||z - ZNHLQ(W) > N, for infinity many N € N) = 0.
We apply the Borel-Cantelli’s lemma [1, Theorem 2.7]. It suffices to prove that
(10.82) Y P(|Z = Zn | poay = N7%) < <.

N=7L0

Let p > 0. By Chebyshev’s inequality, (7.50) and using the mixed-norm (7.47), we
derive

P(HZ - ZNHL2(Bd) = Nia) < NQPE(HZ - ZNHI;(Bd))
= NQPHZ - ZNHILP(Q,N
(10.83) < eN~(ate/2p,

(B1)

We choose now p > 1/(—a+ ¢/2) and we obtain
Z N7(7a+5/2)p < 0.
N=1

The last together with (10.83) leads to (10.82) and completes the proof.
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