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STOCHASTIC PROCESS GENERATED BY 1-D ISING MODEL WITH

COMPETING INTERACTIONS

We consider a stochastic process generated by 1-D Ising model with competing in-
teractions and describe all distributions of this process. It is shown that the set

of all limit Gibbs measures, i.e. phase diagram, consist of ferromagnetic, anti-

ferromagnetic, paramagnetic and modulated phases. Also it is proven that on the
set of ferromagnetic phases one can reach the phase transition.

1. Introduction

In the theory of random processes, every process is determined by the family of
its finite-dimensional probability distributions. By Kolmogorov’s fundamental theorem,
these distributions give rise to a unique probability measure on the σ−algebra of mea-
surable subsets generated by the finite-dimensional cylindrical sets.

In problems of classical statistical mechanics we consider a Gibbs measure that is a
mathematical idealization of an equilibrium state of a physical system which consists of
a very large number of interacting components. In the language of Probability Theory,
a Gibbs measure is simply the distribution of a stochastic process which, instead of
being indexed by the time, is parametrized by the sites of a spatial lattice, and has
the special feature of admitting prescribed versions of the conditional distributions with
respect to the configurations outside finite regions. Then the physical phenomenon of
phase transition should be reflected by the non-uniqueness of the Gibbs measures for
fixed configurations outside finite regions.

The Ising model represents a simplified mathematical description of interacting mag-
netic spins within a lattice structure. It assumes that each spin can take one of two
possible values: up or down, representing the spin alignment of individual atoms or
molecules. The interactions between neighbouring spins are considered, leading to the
emergence of collective behaviour and the manifestation of macroscopic magnetic prop-
erties.

The first formulation of the Ising model given by Ising himself is as follows [6]: consider
a sequence Λn = {0, 1, 2, · · · , n} of points on the line. At each point, or site, there is
a small dipole or ”spin” which at any given moment is in one of two positions, ”up” or
”down”. It is indicated the spins in the form of a configuration ω = (ω0, ω1, · · · , ωn),
where ωj = + or − with ”+” indicating a spin up and ”-” a spin down and the spin σj is
defined as a function σj : Ωn → {−1, 1} such that σj(ω) = 1 if ωj = + and σj(ω) = −1
if ωj = −.

Let Ωn be a space of all possible configurations ω = (ω0, ω1, · · · , ωn) defined on the
set Λn. Ising defined a probability measure on Ωn as follows. To each configuration ω an
energy H(ω) is assigned by

(1) H(ω) = −J
∑

i,j:i<j

σi(ω)σj(ω)
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The sum represents the energy caused by interaction of the spins. Ising made the sim-
plifying assumption that only interaction between neighbouring spins i and i+1 need be
taken into account. Such pairs is called nearest neighbours and denoted as < i, i+ 1 > .
Thus one can rewrite the equality (1) as following

(2) H(ω) = −J

n−1∑
i=0

σi(ω)σi+1(ω)

Ising then assigned probabilities to configurations ω proportional to

e−
1

kT U(ω),

where T is the absolute temperature (Kelvin scale), k is a universal constant and β =
1
kT is a positive number which is proportional to the inverse of the absolute (Kelvin)
temperature. The probability measure on Ωn is thus given by

P (ω) =
e−βH(ω)

Z
,

where the normalizing constant Z, defined by

Z =
∑
ω

e−βH(ω)

is called the partition function.
Such probability measure defined by an energy function H is called a Gibbs measure.

It is evident that for finite set Λn there exists unique Gibbs measure.
Now consider Ising model defined on infinite countable set Z+ = {0, 1, 2, · · · }. Assume

ω : Z+ → {−,+} is a configuration on Z+ and Ω is the set of all configurations defined on
Z+. In this case the collection of all random variables {σj}∞j=0 forms a stochastic process
(random field). Now we consider conditional probability distributions of the random
process or field inside any finite domain under the condition that its values outside the
domain are fixed.

Let Λn = {0, 1, · · · , n}. It is evident Λ1 ⊂ Λ2 ⊂ Λ3 · · · and ∪∞
i=1Λi = Z+.

As above we consider configurations ω : Z+ → {+,−}. The restriction of ω on any
subset Λn ⊂ Z+ is denoted by ωn(Λn).

Any configuration ω one can split into two sub-configurations ωn(Λn) and ωn(Z+\Λn),
where Z+ \ Λn is still infinite set.

Let us fix some configuration ω̄n(Z+ \ Λn) : Z+ \ Λn → {+,−} and call it boundary
configuration. Then we consider the set of all configurations that vary on Λn but fixed
on Z+ \Λn. Note that this set is finite. The basic assumption concerning the models that
we will consider is the following: if we know what is happening outside a finite subset
Λn of then we can compute the distribution of configurations on the finite set. We define
the conditional Hamiltonian with fixed boundary configuration ω̄n(Z+ \ Λn) as follows

(3) H(ωn|ω̄n) = −J

n−1∑
i=0

σi(ωn)σi+1(ωn)− Jσn(ωn)σn+1(ω̄
n)

Then the conditional Gibbs state on finite subset Λn with boundary configuration ω̄n(Z+\
Λn) to be the measure µn given by

(4) µn(ωn(Λn)|ω̄n(Z+ \ Λn)) =
e−βH(ωn|ω̄n)

Zn(ω̄n)

for any configuration ωn(Λn) ∈ Ωn(Λn), where

Zn(ω̄
n) =

∑
ωn(Λn)∈Ωn(Λn)

e−βH(ωn(Λn)|ω̄n(Z+\Λn)).
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Now we will define a limit Gibbs state on Ω by the following way.
We will say that µ is a limit Gibbs state on Ω, if for any finite subset Λn and for

arbitrary boundary configuration ω̄n(Z+ \ Λn) the conditional probability with respect
to µ given that the configuration ω ∈ Ω is ω̄n(Z+ \ Λn) on Z+ \ Λn is the same as the
conditional Gibbs state on Ω(Z+) given above:

(5) µ(ω(Λn)|ω̄n(Z+ \ Λn)) =
e−βH(ωn|ω̄n)

Zn(ω̄n)

The main problem of equilibrium statistical physics is to describe all limit Gibbs states
of given Hamiltonian, i.e. to investigate the existence and uniqueness of such measures.
The phenomenon of non-uniqueness of a Gibbs measure can be interpreted as a phase
transition and is, as such, of particular physical significance.

Ising [6] proved that for considered 1-D Hamiltonian there exists unique limit Gibbs
distribution, that is this limit Gibbs measure does not depend from choice of boundary
configuration ω̄n.

1.1. Nonhomogeneous 1-D Ising model. 1-D inhomogeneous Ising model is defined
by the following Hamiltonian

(6) H(ω) = −
∞∑

n=1

Jnσn(ω)σn+1(ω)

In [2] it is proven that if Jn > 0 for all n ≥ 1 and

∞∑
n=1

e−2Jn < ∞

then the measure µ+ generated by positive boundary configurations ω̄n(k) ≡ + for all
k > n is not equal to the measure µ− generated by negative boundary configurations
ω̄n(k) ≡ − for all k > n.

For instance, one might take Jn = clog(l + n) with c > 1/2.

2. 1-D Ising model with competing interactions

For Hamiltonian of considered above homogeneous Ising model

(7) H(ω) = −J

∞∑
n=0

σn(ω)σn+1(ω)

we add one more interaction, namely interactions of second neighbours > i, i+2 < with
strength J2

(8) H(ω) = −J1

∞∑
i=0

σi(ω)σi+1(ω)− J2

∞∑
i=0

σi(ω)σi+2(ω).

Such model is called the Ising model with competing interactions J1 and J2.
The existence of competing interactions lies at the heart of a variety of original phe-

nomena in magnetic systems, ranging from the spin-glass transitions found in many
disordered materials to the modulated phases with an infinite number of commensurate
regions, that are observed in certain models with periodic interactions.

Axial Next-Nearest-Neighbour Ising model on Z2 [1],[3],[4], much studied in connection
with materials like CeSB, where interactions of different signs are in conflict along one
direction.

A Cayley tree Γk of order k ≥ 1 is an infinite tree, i.e., a graph without cycles with
exactly k + 1 edges issuing from each vertex and respectively a semi-infinite Cayley tree
Γk
+ of order k is the infinite graph without cycles with k + 1 edges issuing from each
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vertex except for x0 which has only k edges. In this case the vertex x0 is called a root of
this tree.

An advantage of models on trees is that no approximations have to be made and the
calculations can be carried out with high accuracy [5],[8],[9] . The important point is
that statistical mechanics on trees involve non-linear recursion equations and are natu-
rally connected to the rich world of dynamical systems, a world presently under intense
investigation.

A graph on Z+ one can consider as semi-infinite Cayley tree of first order, that is
a connected graph without cycles where each vertex, except vertex {0} , has exactly 2
nearest neighbours, and vertex {0} has only one nearest neighbour.

Let Λn = {0, 1, · · · , n} , Ωn is the set of all configurations and ω̄n(Λc
n) is a fixed

boundary configuration.
Then a conditional Hamiltonian is defined as follows

H(ωn|ω̄n) = −J1

n−1∑
i=0

σi(ωn)σi+1(ωn)− J2

n−2∑
i=0

σi(ωn)σi+2(ωn)

−J1σn(ωn)σn+1(ω̄
n)− J2σn−1(ωn)σn+1(ω̄

n)

−J2σn(ωn)σn+2(ω̄
n)

Here last three terms interactions with boundary configuration ω̄n(Λc
n). Then the con-

ditional Gibbs state on finite subset Λn with boundary configuration ω̄n(Z+ \Λn) to be
the measure µn given by

(9) µn(ωn(Λn)|ω̄n(Z+ \ Λn)) =
e−βH(ωn|ω̄n)

Zn(ω̄n)

for any configuration ωn(Λn) ∈ Ωn(Λn), where

Zn(ω̄
n) =

∑
ωn(Λn)∈Ωn(Λn)

e−βH(ωn(Λn)|ω̄n(Z+\Λn)).

Let Ωn is the set of all configurations on Λn. We split this set into four two-dimensional
cylinder subsets Ω++

n ,Ω+−
n ,Ω−+

n ,Ω−−
n , where

Ω++
n = {ωn ∈ Ωn : σ0(ωn) = +1, σ1(ωn) = +1}

Ω+−
n = {ωn ∈ Ωn : σ0(ωn) = +1, σ1(ωn) = −1}

Ω−+
n = {ωn ∈ Ωn : σ0(ωn) = −1, σ1(ωn) = +1}

Ω−−
n = {ωn ∈ Ωn : σ0(ωn) = −1, σ1(ωn) = −1}

and respectively

Z++
n (ω̄n) =

∑
ωn∈Ω++

n

exp(−βH(ωn|ω̄n))

Z+−
n (ω̄n) =

∑
ωn∈Ω+−

n

exp(−βH(ωn|ω̄n))

Z−+
n (ω̄n) =

∑
ωn∈Ω−+

n

exp(−βH(ωn|ω̄n))

Z−−
n (ω̄n) =

∑
ωn∈Ω−−

n

exp(−βH(ωn|ω̄n))

Assume for brevity

z1 = Z++
n (ω̄n), z2 = Z+−

n (ω̄n), z3 = Z−+
n (ω̄n), z4 = Z−−

n (ω̄n)
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and

z′1 = Z++
n+1(ω̄

n+1), z′2 = Z+−
n (ω̄n), z′3 = Z−+

n (ω̄n), z′4 = Z−−
n (ω̄n),

where ω̄n+1 = ω̄n|Z+\Λn+1
.

Let a = exp (2βJ1) and b = exp (2βJ2), with β = 1
kT , where k is a universal constant

and T is the temperature. Then one can produce the following recursion equations

z′1 = abz1 + ab−1z2

z′2 = a−1bz3 + a−1b−1z4

z′3 = a−1b−1z1 + a−1bz2

z′4 = ab−1z3 + abz4

In the high temperature (a ∼ 1, b ∼ 1) we have paramagnetic phase, i.e. the spins are as
likely to point up as down, whatever the initial conditions: one has z1 = z4 and z2 = z3,
so that a possible choice of reduced (renormalized) variables is

x =
z2 + z3
z1 + z4

y1 =
z1 − z4
z1 + z4

y2 =
z2 − z3
z1 + z4

According recursion equations for zi, i = 1, 2, 3, 4 the previous relations one can rewrite
as follows:

x′ =
1 + bx

a(x+ b)
(10)

y′1 =
by1 + y2
x+ b

(11)

y′2 = −y1 + by2
a(x+ b)

(12)

The average magnetization m for the nth generation is given by expectation σ0(ωn) on
Ω(Λn) with respect to conditional Gibbs measure µn, that is

(13) m =
y1 + y2

x
.

Starting from random initial conditions with y1, y2 ̸= 0, one iterates the recursion rela-
tions (10-12) and observes their behaviour after a large number of iterations.

In the simplest situation a fixed point (x∗, y∗1 , y
∗
2) is reached. According (13) it corre-

sponds to a paramagnetic phase if y∗1 = y∗2 = 0, or to a ferromagnetic phase if y∗1 , y
∗
2 ̸= 0.

A limit cycle signals a commensurate state, with period a multiple of the distance between
sites. Finally, the system may remain aperiodic, which corresponds to an incommensu-
rate phase. The distinction between a truly aperiodic case and one with a very long
period is difficult to make numerically.

Plotting a phase diagram on the plane γ = −J2/J1, α = T/(kBJ1) one can show
that the phase diagram contains a modulated phase, as found for similar models. The
modulated phase contains both incommensurate regions and commensurate regions.

These results differ from those obtained in for Ising model with competing nearest-
neighbour and second neighbour interactions considered on a Cayley tree of second order
[9].
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Figure 1. Phase diagram of the 1-D Ising model with competing interactions

3. Phase Transition

As noted above for 1-D Ising model we don’t reach phase transition. Below we show
for 1-D Ising model with competing interactions we reach phase transition on the set of
ferromagnetic Gibbs states. It is easy to see that

(14) µn({ωn ∈ Ωn : σ0(ωn) = +1}|ω̄n(Z+ \ Λn)) =
1 + x+ y1 + y2

2(1 + x)

and respectively

(15) µn({ωn ∈ Ωn : σ0(ωn) = −1}|ω̄n(Z+ \ Λn)) =
1 + x− y1 − y2

2(1 + x)

Then for limit Gibbs measure µ we have

(16) µ({ω ∈ Ω : σ0(ω) = +1}) = 1 + x∗ + y∗1 + y∗2
2(1 + x∗)

and respectively

(17) µ({ω ∈ Ω : σ0(ω) = −1}) = 1 + x∗ − y∗1 − y∗2
2(1 + x∗)

Since we are considering ferromagnetic phase, the fixed point (x∗, y∗1 , y
∗
2) there exist with

y1∗ ≠ 0 and y2∗ ≠ 0.
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From Equations (11) and (12) we have

y′1
y′2

= −a(by1 + y2)

y1 + by2

Let y1

y2
= t. Then

t′ = −a(bt+ 1)

t+ b
The fixed points t∗ one can find solving the following quadratic equation

t2 + (1 + a)bt+ a = 0.

There exist two real roots if

b >
2
√
a

a+ 1
With respect to the variables γ = −J2/J1, α = T/(kBJ1) this inequality one can

rewrite as

(18) 2γ < α ln
e2α

−1

+ 1

2eα−1

It is easy to verify that the solution of this inequality contains the domain of ferro-
magnetic phase. One can verify numerically that the measure µ+ generated by positive
boundary configurations ω̄n(k) ≡ + for all k > n is not equal to the measure µ− gener-
ated by negative boundary configurations ω̄n(k) ≡ − for all k > n.

Thus we have proved the following statement.

Theorem. For the Ising model with competing interactions there exists a phase transi-
tion.

As corollary one can reproof Ising result about non-existence phase transition for 1-D
Ising model. Note that for Ising model with J2 = 0, we have b = 1 and equations

y′1 =
by1 + y2
x+ b

y′2 = −y1 + by2
a(x+ b)

one can rewrite as

y′1 =
y1 + y2
x+ 1

y′2 = − y1 + y2
a(x+ 1)

that is

(19)
y′1
y′2

= −a

Therefore there does not exist a phase transition.
Conclusion. It is shown that for 1-D Ising model with competing interactions with

J2 ̸= 0 on the domain of ferromagnetic phases one can reach phase transition.
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