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S. KHARDANI, W. NEFZI, AND C. THABET

RELATIVE ERROR PREDICTION FROM CENSORED DATA UNDER
a—MIXING CONDITION

In this paper, we address the case of a randomly right-censored model when the data
exhibit some kind of dependency. We build and study a new nonparametric regression
estimator by using the mean squared relative error as a loss function. Under classical
conditions, we establish the uniform consistency with rate and asymptotic normality
of the estimator suitably normalized.

1. INTRODUCTION

The problem of censored data arises in several applied fields, such as medicine, biology,
public health, economics and demography.

In this paper, we are interested in estimating the relative regression function under
right-censored data under an a—mixing condition. The main motivations of this work
are to propose a new estimator able to improve the performance of the other competitors
such as the one introduced by Nadaraya [26] and the one proposed by Guessoum and
Ould Said [15]. Relative error estimation has been recently used in regression analysis
as an alternative to the restrictions imposed by the classical regression approach.

Let {Z; = (X;,T;),1 < ¢ < n} be n stationary random processes, identically dis-
tributed as the random pair Z = (X,T) with values in R? x R,(d > 1). A common
problem in nonparametric statistics is the need to predict T given X. The ordinary way
to study the relationship between X and T is to suppose that

(1) T=r(X)+e,

where € is a random error variable independent to X and r is a function obtained by
minimizing the expected squared loss function

E [(Tfr(x))Q X =z

In nonparametric forecasting, we often use the least squares and the least absolute
deviation as criteria to construct the predictors.

The nonparametric estimation of the operator r is one of the most important tools
to predict the relationship between T' and X. There exist several nonparametric proce-
dures allowing to estimate this operator. A popular one is the functional version of the
Nadaraya-Watson estimator. The resulting estimator enjoys some important optimali-
ties, such as simplicity, flexibility, and consistency.

However, for many practical situations in time series analysis the mean squared relative
error is more appropriate as a measure of performance than the two previous criteria (see,
for instance, Khoshgoftaar et al. [1] for some models in software engineering, Chatfield
[8] for some examples in medicine or Chen [9] for some financial applications). Indeed
the previous loss function as a measure of prediction performance may not be suitable in
some situations. In particular, the presence of outliers can lead to unreasonable results
since all variables have the same weight.
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In this paper, we construct a new estimator of the regression operator r. This estimator
is obtained by combining the idea of the relative error regression (MSRE) and when the
data are subject to random right censoring under an a—mixing condition. We extend
the work of Khardani and Slaoui [21] to the dependent data. Our alternative solution is
to consider the estimation of the regression function via the minimization of the modified

loss function
T_ 2
(2) E (Mx)> |X:x], for T > 0.

T

This criterium has been widely studied for parametric models, we refer to Chen et al.
[9] for a discussion of the previous works and Hirose and Masuda [16] for a real example
of electricity consumption. When the first two conditional inverse moments of T' given
X are finite, Park and Stefanski [28] showed that the solution of (2), for any fixed z, is
given by the following ratio

r(z) = E[T~YX = 1] . my(x)
E[T2|X =z] " ma(x)

where mg(z) = r¢(z)/f(z) and ry(z) = [t~ fx,r(z,t)dt for £ = 1,2, where fx (")
and fx(-) are the joint and marginal density of the couple (T, X) and X respectively.
Several works have studied the relative regression problem. For example, Jones et al. [17]
studied nonparametric prediction via relative error regression. Khardani [20] considered
the problem of non-parametric relative regression for twice censored data. Mechab and
Laksaci [24] studied this regression model when the observations are weakly dependent.
Recently, Khardani and Slaoui [21] studied the asymptotic properties of a consistent
estimator of this model by using the kernel method for twice-censored data. Moreover,
Hu [14] established the consistency and the asymptotic normality of the regression func-
tion based on the least product relative error. Bouhadjara and Ould Said [2] studied
a nonparametric local linear estimation of the relative error regression function for the
censorship model. Narula and Wellington [27] studied an estimation method for minimiz-
ing the sum of absolute relative residuals. Farnum [13] developed an estimation method
designed to reduce absolute relative error. Park and Stefanski [28] studied prediction for
situations in which relative prediction error is more important than the usual prediction
error and derived the form of the best mean squared relative error predictor.

The main purpose of the present work is to consider a general framework and the
characterization of the asymptotic properties of the kernel relative regression estimators
based on censored and dependent data, this generalization of the work of Jones et al.
[17] and Khardani [20] is far from being trivial and harder to control the estimator of
Kaplan-Meier and the mixing condition, which form a basically unsolved open problem
in the literature. We aim to fill this gap in the literature by combining Jones et al. [17]
results with techniques handling the Kaplan Meier estimate. However, as will be seen
later, the problem requires much more than ”simply’ combining ideas from the existing
results.

The paper is organized as follows: we present our model and the general idea of the
mean squared relative error function in Section 2. Assumptions and theoretical results
are given in Section 3. In Section 4, we examine the performances of our estimator with
a simulation study. Finally, the proofs are given in Section 5.

2. DESCRIPTION OF THE MODEL AND ESTIMATOR

We consider a regression model in which the response variable is subject to random
right censoring. Censored data are present in many practical applications in a wide
variety of fields, including economics, medicine, biology, and biostatistics. For example,
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let (T})1<i<n be the survival (or failure) time of individuals who are involved in a clinical
study or a possible monotone transformation of it. We consider (X;)1<;<n a random
covariate, such as the age, the dose of a drug or the cholesterol level. As often occurs in
practice, the response (T;)1<ign is subject to random right censoring. In other words,
instead of observing (7;)1<i<n, One observes the n pairs of variables (Y7, d;), where

Y; = min(T3, C;), 6; = 1yn,<cy

and C; represents the censoring time with common continuous distribution function (df)
G, which is assumed to be independent of T;.

For any distribution function L let 71, = sup{¢, L(t) < 1} be its support’s right end-
point. Further, we denote by F(:) (resp. G(-)) the df of T (resp. of C) and by 77 (resp.
7¢) the upper endpoints of the survival function F (resp. of G). In what follows, we
assume that 7p < oo, G(7r) > 0, 7y < min(7r,7¢) and C is independent to (X, 7).

In this kind of model, it is well known that the empirical distribution is not a consistent
estimator for the distribution function G. Therefore, Kaplan and Meier (1958) proposed
a consistent estimator G,,(-), for the survival function G = 1 — G. which is defined as

1-6¢; 1 H<t .
Gn(t) = { H?:l (1 o 77,—71—(&-)1) S, if t< Y(n)a
0

otherwise,

where Y(1) < Yoy < ... < Y{,) are the order statistics of (Y;)i1<i<n and d(; is the
concomitant of Y(;).

First, we recall that, the model (1) suffers from censorship data, for that, we use the
so-called "synthetic data” which allows us to take into account the censoring effect on
the lifetime distribution (for more details, we refer to Carbonez et al. [7] and Kohler et
al. [19]).

The extension of nonparametric estimation procedures to the censored framework
requires replacing the unavailable data with a suitable construction of the observed data
given by

Sip(Ys)
G(Y;)

3) V) = 1<i<n
for any measurable function .

Assuming a sequence of covariates is given, we then observe the triplets (Y7, d;, X;)1<i<n-
All along this paper, we suppose that:

4) (T3, X;); and (C;); areindependent.
Then from (3) and (4) we get
. _ S19(Y1) _ S1p(Y1)
Elp(Y)|X1] = E [ o) |X1} = E{]E { G |T17X1} |X1}
10(T T
- e{em s ) (e oz
() = E(p(Th)|Xy).

In the current work, we propose to use the MSRE rather than the MSE criterion. Thus,
our proposed estimators are: Firstly, we consider a ” pseudo-estimator” given by

?n(x) = Tlm(z)v
Mo n(x)
where ,
1 =&Y X;—x
(@) = — S 2l (2 for e {1,2}.
Mg () whi 2 G(Y,) ( ™ > or {1,2}
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Second, we consider the estimator:

(6) rn(x) == )

where

1 = 6Y " (X, —x
m = — —— K L f 12 1,2}.
my(z) i ; T ( W ) or (e {1,2}

In what follows, we suppose that Xi,..., X, satisfy the a-mixing dependency prop-
erty, whose definition is given below.
Let Z = (ZZ-)Z->1 be a sequence of random variables. Given a positive integer n, set

a(n) = sgpsupﬂ P(ANB)-P(AP(B)|, Ae ]—'f(Z) and B € ]-',?in(Z)},

where FF(Z) is the o-field of events generated by {Z;,i < j < k.}
The sequence is said to be a-mixing if the mixing coefficient o (n) — 0 as n — oo.
The a-mixing condition, also called strong mixing is the weakest among mixing conditions
known in the literature. Many stochastic processes satisfy the a-mixed condition: the
ARMA processes are geometrically strongly mixing, i.e. there exists p € (0,1) such
that, a(n) = O(p™). The threshold models, the EXPAR model, the simple ARCH
models, their GARCH extension and the bilinear Markovian models are geometrically
and strongly mixing, under some general ergodicity conditions.

The a/p-mixing has many practical applications (see, e.g., Cai, (1998, 2001), Bradley,
(2007) and Dedecker et al., (2007) for more details). As an example (see Bosq (1999)):
A linear process is defined by

S
X :Zajet,j tGZ,
j=0

where a; = O(e™™),r > 0 and € are independent with zero-mean real random variables
with a common density and a finite second moment. Then the series above converge
in quadratic mean, and (X3) is p—mixing and therefore a—mixing with coefficients that
decrease to zero at an exponential rate. For more examples of a-mixing models (see
Doukhan (1994)).

3. ASSUMPTIONS AND MAIN RESULTS
Throughout the paper, we denote by E[T~¢|X = -] the conditional /-inverse moments of
T given X and by my(-) = E[T~¢X = -]f(-), with f the density of X; ¢ € {1,2,3,4} and
let v¢(+) = E[% |X =]f(-). When no confusion is possible, we denote by M and/or M’
any generic positive constant. In this section, we aim to establish the uniform convergence

(a.s.) of rp(x) to r(z) over a compact S.
Finally, let us consider the following assumptions about the process (X,,,T,).

M1 (&, = (X, Thn)nen) I8 a strong mixing process such that the mixing coefficient
satisfies a(n) = O(n~") for some v > 4.

(D1) For each k # &/, one has :

“= |k S}cl’l\)>1 ||f(Xk,Xk/)|(Yk>Yk/) (slu,t|v) — kalYk (slu) ka"Yk’ (t|v)||oo <

D2: The joint density f; ;. of ((Xk,Tk), (Xis, Tj)) exists and satisfies

sup |f,’§k/(,) — fk(~7~)fk/(',~)| <C<oo, forany|k—kK|>1.
(R4 xR)?
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D3: The joint density f(-,-) is bounded and differentiable up to order 3. Moreover,
all the partial derivatives are uniformly bounded up to order 3.

(K1) The kernel K is bounded, symmetric and has a compact support. It is also
Holder of order v and [p, ub K9 (u)du < oo with u = (ug,--- ,uq)? for £ = 1,--- ,d,
i€{0,1,2} and j € {1,2}.

(K2) The function my(x) is twice differentiable and sup,cg|my ()] < +oo, € €
{1,2}.

(K3) ma(x) > M,¥ x € S, the inverse moments of the response variable satisfy:
Vk>1, 7i(z)=E|L~|X =z| exists and are of class C2 in S.

G(T)
(H1) For d > 1, the bandwidth (h,,) satisfies:
(i) im0 257 =0,
d v v a+l—v
(i) nhﬁ( D) — 0, nhi( ) — 00, for a such that 1 < a < v — 1, where v

is as in M1.

Discussion of the assumptions. Assumption M1 specify the model and the rate of
mixing coefficients. D1-D3 are mild regularity assumptions that are usually required to
obtain convergence rates and the asymptotic normality in regression kernel estimation.
More precisely, D1-D2 allow to get the same rates as for the iid case. Regarding
Assumptions K1-K3, we refer to Silverman [30] for the univariate case. Finally, H1
gives a condition for the bandwidth which allows the estimation of the covariance term.

The independence assumption in (4) between (C,,), and (X,,T,), may seem to be
strong, and one can think of replacing it with a classical conditional independence as-
sumption between (Cp,), and (Ty,), given (X, ).

Theorem 3.1. Under Assumptions (M), (D), (K) and (H), we have

_ logn 4
ilelg|7’n(l') r(z)] =0 <max {1/ i 7hn}> a.s.

. 1/(d+4)
For h, = ( Og") , we have

1 2/(d+4)
sup |rn(z) —r(z)| = O (( ogn) a.s.

zeS n
Theorem 3.2. If the assumptions (M), (D), (K) and (H), hold, then for all £ = (1,2)
_ 1 T2
(7) Var(my (z)) = n—th {G(Ti) |X; = x] f(x) » K?*(z)dz, a.s.
~ L I 2
(8) Var(me,(x)) = nih‘fLE [G(TZ) | X; = x} f(z) y K*(2)dz, a.s.
(9) nhd Cov[my (), Man(z)] — E [(1;(_;) |X = a:] f(x) » K?*(z)dz, a.s.

Theorem 3.3. Under assumptions (M), (D), (K) and (H), then for any x € A, we
obtain
a \1/2
(%) (rn(z) — r(z)) B N(0,1) as n— oo,
e {12(2) = 2(@)s(2) + P (@)(2)}
2 _el@) = 2r(x)ys(x) + ro(x)ya(r 2
of(x) = m3() y K*(z)dz.
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and

A= {oes @I Eme) L),

m3(x)
B denotes convergence in distribution, N the Gaussian distribution.

Remark 3.1. (Comeback to complete data). In absence of censoring (G(-) = 1), the
asymptotic variance becomes

) = L) = @I 4 D) [

4. SIMULATIONS RESULTS

In this section, we discuss the feasibility and the performance of the relative nonpara-
metric method through an empirical study. Precisely, our main purpose is to compare
the efficiency, in the sense of the MSE, between relative and classical kernel regression
estimation in the time series case. For this aim, we consider a sequence of m-dependent

variables
+m

Xi=)Y 7

where (Z;); are independent standard normal variables. Obviously, these random vari-
ables form an a—mixing process satisfying Assumption (M;). Concerning, the response
variables, we use the following regression model to generate them

3
Ti=2cos(§Xi)+ei, 1=1,...n.

For this simulation study, we consider two types of (¢;); that are generated from the
following normal mixture distributions (see, Marron. and Wand [23] for more details on
the normal mixture distributions):

Law Distribution function
Standard normal distribution (S.N.D.) N(0,1)
Skewed bimodal distribution (S.B.D.)  2AN(0,1) + 1N (2, §)

Recall that, our main goal of this empirical study is to show the applicability of our
procedure in practice, with special attention on the influence of the three fundamental
parameters involved in this approach, namely the mixing condition, the percentage of
censoring and the number of outliers data. While the first (mixing) is controlled by
m, we control the effect of the censoring model by considering censoring variables C'
distributed by a normal distribution N(0,c) and the percentage of the outliers data.
So, the behavior of both estimators is evaluated over several parameters, such as the
dimension of the regressors, the sample size n, the percentage of censoring 7 (controlled
by o), the correlation of the data (controlled by m) and the number of the outliers data
(see Table 1). For the sake of shortness, we consider only the unidimensional case. We
fix the sample size n = 200 and consider three censoring types ( 7 = 8, 7 = 37 and
7 = 65) and three dependence cases (m = 2,6, 10).

We use the Gaussian kernel and we consider the well-known smoothing parameter
defined by h,, = 02n~/5 where

1 & _ I
aﬁ:n_lz(xﬁxﬁ and X:EZXi.
=1 =1
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We compare the values of the mean squared error (MSE) for the classical regression
(MSE?) (see Guessoum and Ould Said (2010) and the relative error regression (MSE?)
methods represented by
1 n A 1 n
MSE' = n Z(Tn(Xz) - Yz)2 and MSE® = n Z(TTL(Xi) - Yz)2

i=1 =1

Cond. dis. m 7 \ MSE? \ MSE?

S.N.D 2 8 0.12 0.15
371 0.38 0.36

65| 0.87 0.65

6 8 0.34 0.42

371 0.76 0.74

65| 1.24 1.17

10 8 0.66 0.62

371 1.22 1.09

65| 1.64 1.56

S.B.D 2 8 0.86 1.15
371 1.57 1.42

65| 2.19 2.02

6 8 1.03 1.20

371 1.94 1.57

65| 2.34 2.12

10 8 1.31 1.42

371 2.18 1.95

65| 2.74 2.87

Table 1 The MSE errors according to the censoring rates and dependence degree.

It appears that the performance of both estimators is less affected by the percentage of
censoring and the degree of dependence. However, the quality of estimation is dramati-
cally destroyed in cases of strong dependence and strong censoring.

To show the robustness of our approach and the effect of outliers data, we generate
the case where the data contains outliers (see Table 2). For this purpose, we set the
sample size and the censorship rate (n = 400, 7 = 40% and m=6). To create this outlier
effect, the number of values of this sample is multiplied by a factor called MF.

Outliers 1 5) 10 15 20 30 40

MSEFE! 0.02 0.525 7.06 164.1753 658.1290 5.4 e+10 9.478e+12

MSE? 0.012115 0.015677 0.012498 0.012450 0.012450 0.012450 0.012450

Table 2. The MSE errors according to the number of outlier data with 7 = 40% and
m==6.

CONCLUSION

In this paper, we have investigated the asymptotic properties of a nonparametric
estimator of the relative error regression given a dependent explanatory variable, in
the case of a scalar censored response. We have used the mean squared relative error
as a loss function to construct a nonparametric estimator of the regression operator
of these censored functional data. We have established the almost surely convergence
and asymptotic normality of the proposed estimator. Additionally, a simulation study
was performed to support the theoretical results and to compare the quality of predictive
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performances of the relative error regression estimator with those obtained from standard
kernel regression estimates.

5. AUXILIARY RESULTS AND PROOFS

To prove our results, we state the following lemmas, which will be proven in the
Appendix subsection.

Lemma 5.1. Under assumptions of Theorem 3.1 and for £ € {1,2}, we have

~ ~ loglogn
sup |me(x) — My n(z)| =0 <“g g > .
€S n

Lemma 5.2. Under assumptions of Theorem 3.1 and for ¢ € {1,2}, we have
sup [E(172g,n(2)) — m, ()] = O(h7,).
EAS

Lemma 5.3. Under assumptions of Theorem 3.1, we obtain

~ ~ - logn
iymAM@EW%M@NO<MnW>-

Proof of Theorem 3.1. We consider the following decomposition:

1
sup |rp(z) —r(z)| < ———————— ¢ sup |mi(x) — M1 (x)| +sup |min(x) — E(mi . (x
s 1 ()~ r(0)] < oz {sup i) = o) 451 [ 0) = B (o)

+ sup [E(my n(2)) — ma(z)] + sup(|jma (2)]) {Sup M2 () — maon ()|
zes zes €S

+smpmumu>—Emwﬂ@»-+amwamwx@>—nuu>}}.
xeS xeS

Thus, the proof of Theorem 3.1 is a direct consequence of Lemmas 5.1-5.3. O
Proof of Theorem 3.3. From (6), we have the following decomposition:
rn(x) = (@) = 1o (2) = T (2) + 70 (2) — r(2) = Tin(2) + Tan(2)
where
Tin(z) =1y () —Tp(z) and Zo,(z) =:Tp(z) — r(x).

The proof is derived by showing first that Z;, (x) is negligible, whereas Zo, (x) is asymp-
totically normal distributed.
First, we can write that

Tofe) = (B + Vilia(e) ~ E (o)) + Vi
where
Ve = S Cla]mele) - [E e @) @)
Bu = oo linae) = E s a(@)ma(a) + [E [ia u(w)] = e (@)l )]
Then, we have,
Fa@) = (@) = Vi = s Bt Valiian () ~ i o(x)])

mQ,n(@") 7
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where
Tin (z) = m]n(x) —E [m],n(x)] , for j=1,2.

Concerning Zo,, (), on the one hand, the denominator Mg, (z) converges to mso(z)
(see Lemma 5.5), while for the numerator, both

1/2 d 1/2
nhd nh
—— v d | =—%5— v,
(@) % = (o) "o
are negligible (see the following Lemma 5.5). In contrast, B,, is asymptotically normal
(see Lemma 5.4 below). For the latter, we first evaluate its asymptotic variance before

dealing with its asymptotic normality. Finally, Theorem 3.3 is a consequence of Lemmas
5.1-5.5. 0

Lemma 5.4. Under assumptions of Theorem 3.3, we obtain

nhd 1/2
<O_2(h"2(x)> (B, —E[B.]) 3 N(0,1).

z)m3
Lemma 5.5. Under assumptions of Theorem 3.3, we obtain

g (1) = ma(),

nhfb 1/2
(ﬂ(x)m%(x)) Vn 0,

and

nhd Yz . ~ P
(02(@’”15(;6)> Vn(mgm(l‘) —E [mgm(I)D — 0,

where < denotes convergence in probability.

Proof of Theorem 3.2. Proof of (7): Using equation (5) and Lemma 1, we have

Var(mi.(z)) = ZVar [V}n(x)} +2 Z Cov [V}n(x)vjln(m)] .
i=1 1<i<j<n
= Il,n + IQ,n-

Note that for any function ¢, we have §;¢(Y;) = 0;0(T;). Then, since G(-) is continuous,
we have:

- 1 T2 X, —z
Iin = E Var [V}, (z) — K2< >E Lir <y X, Ty
- [ , ] nh%d G2(T1) B [ {T:<Cq} }
1 71! X, —z
- E2 | =1L K( L )IE Lir <o | Xi, T
nh%d Gl(Tl) hn [ {T:<Ci} ]

. Kln(l‘) -+ ICQn(lL')

For Ko, (z), we once again use the conditional expectation properties (see equation
(5)) to get, under K1, K3 and H1,

(10) Koon(2) = —— B2 [TflK <X1 — x)] =o(1).

T nh2d B

For K1, (x), once again using the conditional expectation properties (see equation (5)),
Taylor’s expansion with integral remainder and assumptions D3, K1 and K3, we get,
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(11) Kln(x) =

(2]

Gf{;)ﬂ <Xz;x>w ]

1 N P. S ofT—0
_nh%dE[K < . )E H il K ( » )Wg(v)dv

nuj

2d
nh?

G

s

1 n g2
0%y (x — shpu)
1—s) S 2L sy
—|—/0( s) duidz, (ushujh)ds| du

=ni,cg/R;;(2(“’” s(e)dw o ().

For what follows and up to the equation (17) below, we will show that the covariance
quantity Z, ,, is zero.
Hence, since V§  (z) is centered, we have

Loy = 22 ZOO’U i Vin(@)].

=145 j=1

Notice that for any function ¢, we have 0;0(Y;) = 6;¢0(T;). Then, since G(+) is contin-
uous, we have:

(12) Cov [V, (2)V] ()] = ﬁ/ﬂ%d/m/md/ﬂgl( (x—
X fij—iv1(u, 7 8, v)dudrdsdy — m |:/]Rd/]RK (x

Now, following Masry [22], we define the sets
B1 ={(i,7), such that 1 < |i — j| <1n,} and
By = {(i,7), such that n, +1 < |i —j| <n—1},

2
u) v f(u, U)dudv]

of2)

where 7, = o(n). Then, we have
(13) > 1Cou[Via(@)Vin@)]= Y [ENVin(@)Vjn(@)]

1<i,j<n (i,5)€B1
+ > [EVin(@)Va@)].

(i,5)€B2
By (12), we have
n—nn Nn+i
(14) > [B(Vin@)Vin@)l = > > [E(Vin(@)Vjn(@)] = O ((na/n)).
(i,7)EB1 i=1 j=i+1

To bound the sum over By in (13), we use the moment inequality in Rio [29] (page
10, Formula 1.12b). For that let a,b and ¢ be real numbers greater than 1 such that
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1/a+1/b+1/c =1, then

1 2 a(a(]f —i])V/e

G (1)
_1\ b
e (452) (56

o (55 ()

c~| 1/c
Furthermore, observe that, under K1, D3 and M1, we have for any (z,t)

e (55) (457 ¢ o - -0t

which, when replaced in (15), yields (the (7}, X;)-term with exponent c is dealt with in
the same manner)

(16) Y2 B (Vina V5] < €y b F S (a(lj — i)

(15)  [E(Vin(2,0)Vjna (2t

(4,5)€EB2 " (1,5)€B2
n—1
1 d(5+2% a —1; —d(*H —v/a
= WS (- (@) = 0 (w7 )
n l=nn+1

Now, equalizing ((14)) and ((16)), we get
7d(a-f1)

Tin ~ Nn )

which replaced in (13) gives

Z |E(vi,n(xat)vj,n(x’t))| =0 <a£1u> :

1<4,5<n nhy v
Under H1, we get
(17) Zon =o0(1).
Then, (10),(11), (17) and a Taylor expansion ensures that
-2
Var(min(x)) = %E L?(’Tl) | X; = x} f(z) y K?(2)dz.
Next, similar to the proof of (7) we find
Var(man(x)) = ! —FE [ L | X; = x} f(z) K?(2)dz.
’ nhd | G(T;) R

Proof of (9): Using the following decomposition:

Cov [ ,n(x), Man(z)] = nhd ZA” + Z ZA” =F + F,

= 117£Jj 1

where for any s, t:

-1 . -2 .
As ¢ = Cov [(SSYS K(x Xs>7§th K(m Xt)} .
’ G(Ys) hs G(Yy) hy

For F3, choosing ¢, = o(n) — 400, we have:

= Iy + Fys.

<2 nhd [ZZMNHP + Z Z|Ap ktpl

k=1p=1 k=cp41 p=1




RELATIVE ERROR PREDICTION 45
Next, we study the term F55. Using the Davydov lemma, we obtain:

1 _
|Apipl < 8la(k)]T | K2, BY .
Therefore, under M1 and K1 we obtain:

—2 _ _ v
Fay < Cst 2||K |2 [nhd] " Sp2) i S Pk

Consequently,
(18) Fp=0 [c,?" h,‘fd} .
On the other hand, for Fb;, we pose:
9271« =[x X)) (Vi Ye) — IXn v @ Fxv, -

Under D1, we can write:

Aphip < h2cte HKHioSUszl H91:+p,pHoo B[y—3].

and
Fpn < 2 [nhi]_2 ne,h24 | K |2, supys, Hg’:“”pHoo E|v—3|.
We have
(19) Fyp =0 (%‘) = o(1).
Choosing:

Under (18) and (19), we have :

nhiFy, — 0, asn — oco.

For Fy, we have:

nhiF = h ¢ /
R

K (xh_ “) E [ Ty - u] Flu)du
— hd /Rd K (”7“) E {g(;) X = u} F(u)du
x /Rd K (T’) E {g(_;) X = v} F(v)dv.

A direct application of Bochner and Toplitz lemma allows us to show the convergence
of the first term of the right-hand-side of nhl Fy to E [% | X = x] f(@) [pa K2(t)dt and
the negligibility of the second term. Finally, we have
1 T3
= [ =)o

Cov(firy (), g (@) 9 K2(2)dz + o (nlh” .
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APPENDIX
Proof of Lemma 5.1. Using the fact that,
(20) L <cyp(Y1) = Lin <cyo(Th).

For all measurable function ¢ and for all ¢ =1,...n, we have

_ _ 1 | 6V D G S N ¢
_ = — K - =K
[y () — My ()] nhd ; G (i) ( hin ) G(Y;) ( hn )‘
1 T, —X; Ty oo T8 — X,
_ 1 Z {T:<Cy} K(:c XZ> _ lmcen i K(m XZ)
nhd —~  Gu(Ty) I G(Ty) hn

e (1554 ) O

n

L s (Gt~ GO — 3

~ Go(T)G(TH) t<ra nhi &

r— X;
T'K L.

Then, by using the strong law of large numbers (SLLN) and the law of iterated logarithm
(LIL) on the censoring law (see formula (4.28) in Deheuvels and Einmahl [10]), we have
~ ~ 1
sup |[my () — myp(x)] < T)IE (

1 - X; logl
(2
x€S G (TH hn hn n

Then, assumptions (D3) and (K1-K3) ensures that

Sup [y () — My p(z)] = O <\/@> = o(1).

O
Proof of Lemma 5.2.
_ RN (x — Xi>
E(m;,(z)) —m(z)| = |E — K —my(x
£ (2)) — mi() [n e (@)
16 Tr — X1
wan” ]
Moreover, proceeding as in (5), using (20) and a Taylor expansion, we have
sup [E(my ,(x)) — my(z)| = sup /K(t) [my(z — hpt) — ml(gc)]dt‘
€S €S
h% 2, 1
=sup| [ K(t)[-hptmy(z) + —2t"m](s)]dt
res 2
< hy,, sup /tK(t) 1(x dt‘+h2 sup / —K(t
zes zeS
where s is between x — h,,t and z. Assumptions (K1 — K2) conclude the proof. (]

Proof of Lemma 5.4. 1t is clear that: E[B,] =0, so Var[B,] = E[B2]. Then

21 = E{[m1.n(x) — E(my,(2))]? ma () 2— ml(x)cov m1.n (), Mo (T
BIB2] = ([ (o) ~ B o)) + { ] 2P oy iy ), )

= Var(my () + TQ(x)Var(ﬁzgm(x)) —2r(z)Cov(mq pn(x), Ma2,n(x)).
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2 —4
Var[B,] = f@) {IE [TX = x} + r*(z)E [T|X = x}

G(T)
e [ L x = K2(2)d

r(x an X" x y z)dz.
Then, by the application of Theorem 3.2 it follows that
B 1/2
(oms)  (Ba—EIB) BN O,

o?(x)m3

Proof of Lemma 5.5. It follows from Lemma 5.1 that
E[ms p (x) — mg (z)] — 0.
We have

~ 1 ~ (51‘}/;_2 inXl 1
Var(fign(w)] = 5353 > Var {G(Y)K< D )] =0 ().
nog=1 ¢ "

Hence ma ,, () 5 ma(x).
Next, it is clear that the second limit of Lemma 5 is a consequence of the above conver-
gence. Then, it suffices to treat the last result. For this, we use the fact that

Var[(men,(z) — E [ma,(z)])] = Var[me,(z)] — 0.
Then, by applying Lemma 5.1, we obtain V,, = O(h2). Then, we deduce that

nhd Yz . ~ P
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