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A QUICK PROBABILITY-ORIENTED INTRODUCTION TO

OPERATOR SPLITTING METHODS

The survey is devoted to operator splitting methods in the abstract formulation and
their applications in probability. While the survey is focused on multiplicative meth-

ods, the BCH formula is used to discuss exponential splitting methods and a short

informal introduction to additive splitting is presented. We introduce frameworks
and available deterministic and probabilistic results and concentrate on constructing

a wide picture of the field of operator splitting methods, providing a rigorous de-

scription in the setting of abstract Cauchy problems and an informal discussion for
further and parallel advances. Some limitations and common difficulties are listed,

as well as examples of works that provide solutions or hints. No new results are pro-

vided. The bibliography contains illustrative deterministic examples and a selection
of probability-related works.
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11. The Itô-Taylor expansion, the Kunita expansion and exponential methods

for SDEs 87
12. General results for SPDEs and SDEs 88
13. A few examples: diffeomorphic flows of SDEs, Brownian web and

non-homeomorphic Harris flows 92
Acknowledgments 93
References 93

2020 Mathematics Subject Classification. Primary 60H35; Secondary 60K35, 65C30.
Key words and phrases. Operator splitting methods, Trotter-Kato formula, exponential splitting.

50



AN INTRODUCTION TO OPERATOR SPLITTING METHODS 51

1. The scope of the paper and first examples

This paper is an extended and reworked version of a short course given by the author
at ”Uzbekistan-Ukrainian readings in stochastic processes”, Tashkent-Kyiv, 2022, and
was prepared for a special issue of ”Theory of stochastic processes”, devoted to publishing
lecture notes from the aforementioned workshop.

Operator splitting methods is a family of well-known methods of decomposing a dy-
namical system by providing a representation of the governing mechanism as a sum of
simpler components (”forces”) and using this representation to provide an approximation
of the real trajectory of the dynamical system. Though this idea of ”splitting” is often
associated with the celebrated abstract Trotter-Kato formula, in which case the approx-
imation is constructed by using a composition of subsystems each of which is driven by
exactly one component of the aforementioned representation, it goes far beyond that
and includes weighted (linear) combinations of such subsystems, compositions of mixed
backward-forward Euler schemes and can be encountered in the optimization theory in
a disguise.

More specifically, the idea is as follows. The time interval is divided into sufficiently
small steps, and on every step a solution operator of the original system is replaced with
an approximation that is constructed by a splitting procedure, after which the solutions
are combined recursively starting from time 0.

Due to the general nature of the idea, operator splitting can essentially be used any-
where where ODEs or (S)PDEs with a natural decomposition arise, be this decomposition
dictated by the presence of co-existing physical, chemical or biological mechanisms, often
acting on different space/time scales, or by properties of available numerical methods.

Example 1. Consider a general advection-diffusion-reaction equation1:

(1.1)
∂u

∂t
= div(A gradu)− div(Bu) +R,

where A represents diffusion, the field B is (possibly superficial) velocity and R is sources
and sinks. R may be of chemical origin, while the velocity field reflects physical properties
of a reservoir etc. One may prefer drastically different numerical methods for integrating
subsystems obtaining by splitting the RHS into a sum of differential operators of at most
second order and treating those subsystems separately. For instance, physically justified
first order equations have a developed theory that often explicitly relies on conservation
laws (e.g. [189]) while the diffusion part is typically treated via finite elements (e.g. [359]).

Example 2. Assume that a1, a3 < 0, a2 ∈ R, |a1| ≫ |a2|+ |a3| and |a2|, |a3| ≈ 1. Consider
the ODE

dy

dt
= Ay,

A =

(
a1 a2
a2 a3

)
.

If we try to simulate y by using the explicit forward Euler method with step size h, a
necessary condition is

∥I + hA∥ < 1

in the operator matrix norm, which implies that h should be of order 1
|a1| . Since h is

limited in practice, it may not be possible for the forward Euler method to be stable.
However, for the decomposition

A = A1 +A2 =

(
a1 0
0 0

)
+

(
0 a2
a2 a3

)
1Alternative names are general scalar transport equations, convection-diffusion-reaction or

convection-diffusion equations etc. The term ”advection” is often used synonymously to ”convection”.
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both equations

dy(k)

dt
= Aky

(k), k = 1, 2,

can be solved explicitly. This is a toy model example where a stiff (A1) and a non-stiff
part (A2) of the original equation can be isolated. Here stiffness (e.g. [170, 230, 189] in
the deterministic setting and [258] in the stochastic setting) in the context of operator
splitting methods is understood in a vague general sense: a system is stiff if a successful
application of certain numerical methods (usually explicit ones and/or those used in
the field as standard integrators) requires an impractically small time step and is thus
infeasible or costly/hard to implement. The idea of the current example combines well
with the previous example since competing mechanisms of different origin (chemical vs.
mechanical) may act on different scales, which is a typical source of stiffness as it directly
increases the stiffness ratio.

Example 3. (e.g. [33]) As a development of Example 2, consider a stiff ODE in Rd with
constant coefficients

dy

dt
= Ay,

where eigenvalues ak, k = 1, d, of A are distinct, real and negative and |a1| ≫
∑

k=2,d |ak|,
ad ≫ ak, k = 1, d− 1. Then

y(t) ∼ Ceadt → 0, t→ ∞,

for any y(0) and the term for a1 gets negligible in comparison to eadt as t grows. But
the explicit Euler method with step size h displays the same asymptotic behavior only if
h|a1| < 22. Moreover, with this condition violated, the approximations diverge as t→ ∞.
Thus the stability of the explicit Euler method depends on parameters of a subsystem
whose contribution to the dynamics of the whole system is minor at best. This is a
typical feature of stiff systems. Separation of the problematic direction from the rest of
the system is beneficial in this case.

Example 4. Let a1, a2 ∈ R. Consider

∂u(x, t)

∂t
=

1

2

(
a1

∂2

∂x21
+ a2

∂2

∂x22

)
u(x, t), x ∈ R2, t ≥ 0,

u(x, t) = u0(x).

Let gt be the one-dimensional Gaussian density with variance t. Then

T
(k)
t f(z) =

∫
R
gt/√ak

(z − x0)v0(x0)dx0,

solve
∂v(z, t)

∂t
=
ak
2

∂2

∂z2
v(z, t), z ∈ R, t ≥ 0, k = 1, 2.

Combining operators T
(1)
t and T

(2)
t on the interval [0;n−1] gives for any x = (x1, x2)

T
(1)
t/n

(
T

(2)
t/nu0(·, x2)

)
= Eu0

(
Aw

( t
n

)
+ x

)
,

where w is a two-dimensional Wiener process and

A =

(
a1 0
0 a2

)
.

2Unless the initial conditions is 0 in the direction of the eigenvector of a1.
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Thus for any m ∈ N3(
T

(1)
t/n ◦ T (2)

t/n

)n

u0 = Eu0 (Aw(t) + x) = u(x, t),

and the operator splitting scheme is exact in this trivial case. This is an example of the
alternating direction method whose name is quite self-explanatory.

As a result, operator splitting procedures are often developed for equations and prob-
lems in a general formulation (for instance, for the Navier-Stokes equation, the Zakai
equation of the filtration theory, advection-diffusion-reaction equations, and composite
optimization problems as an example in a non-PDE setting).

Such wide availability of the methods results in applications in physics (mechanics of
fluids, gases and solids; classical, quantum and celestial mechanics; electromagnetism;
symplectic integration etc.), chemistry, biology, geology, ecology, weather forecasting,
finances, general machine learning problems (including image processing, large scale op-
timization etc.) and other numerous fields. At the same time, operator splitting methods
can be encountered in purely theoretical studies. Proper examples will be given later in
the text.

The scope of this survey is purely pedagogical:

• to suggest a brief and quick introduction to operator splitting methods, present-
ing basics in a form accessible for a newcomer (with a background in probability)
while still discussing some limitations and technical issues of such methods;

• to provide a wider picture and to at least mention directions the whole theory
goes beyond the Trotter-Kato formula;

• to give examples of results developed through the use of operator splitting meth-
ods in the field of probability and to show that randomness leads to new insights
and new techniques;

This ”probabilistic” orientation simply means that we prefer probabilistic examples, as-
sume a standard level of knowledge in probability, concentrate on multiplica-tive/expo-
nential splitting and include a short survey of the general theory of multiplicative splitting
for SPDEs.

At the same, this also leads to some asymmetries in the text: the discussion of the
Baker-Campbell-Hausdorff formula is rather lengthy only because such material is not
expected to be covered in textbooks on probability while the reader is assumed to be
familiar with SPDEs and variational methods for them so the part devoted to SPDEs
does not explain the setting.

It should be emphasized that there is more than enough information around for a per-
son interested in the topic, including high quality introductory level texts and textbooks.
Not even trying to compete with classical texts,4 we merely concentrate on
gathering (at least in the form of bibliographic references) important basic
facts, hints and probabilistic results as expanded lecture notes (for the afore-
mentioned course) and giving a total newcomer basic understanding and a
map to navigate.

The level of exposition is thus more or less basic and shallow even though the results
cited are often deep and extremely technical to obtain: given the scope and goals of
the survey, it would be irreparably pretentious, futile and plainly impossible to proceed
otherwise. Thus we refer to original sources for proofs, details and precise formulations.

All results discussed in the paper are known.
Obviously, the sheer amount of publications devoted to theoretical and applied studies

of operator splitting methods immediately renders impossible the task of providing an

3f ◦ g = f(g) hereinafter.
4There are also highly efficient surveys (e.g. [87, 267, 36]).
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exhaustive or even only a representative bibliography unless attention is restricted to a
limited partial case or a specific problem – and the task is highly nontrivial even then. As
a result, the choice of illustrative examples is to some extend random, and we apologize
in advance to all those whose contribution has not been represented and accept all the
critique for such gaps, claiming no ill intent. We also give links to surveys and collection
of references instead of citing sources directly on some occasions. Still, we hope that the
bibliography is of some independent value. No real attempt to give historical notes or to
track results to initial sources has been made.

A reader interested in a general and broad picture may be proposed to consult the
following selections of works as entry points:

• [286, 152, 121, 93, 202, 76, 122] for the Trotter-Kato formula, the perturbation
theory for semigroups and the formulation in the terms of abstract evolution
equations,

• [151, 127]5 for a survey, the general theory, history, connections to optimization
problems, PDEs and variational inequalities, and examples,

• [189] for a treatment of advection-diffusion-reaction equations, examples and a
discussion of numerics,

• [296, 315, 209, 246, 172, 297, 354] for the physical exposition and applications to
Feynman path integrals and the Feynman-Kac formula,

• [187] for operator splitting methods for rough solutions,
• [151, 150, 149, 348, 301, 22, 251, 253, 252] for surveys, innumerable references,
applications, and using operator splitting numerical methods for solving PDEs
and variational nonlinear inequalities, (convex) optimization problems (including
sparse and large scale problems), fixed point algorithms, problems for monotone
operators etc.,

• [169, 33, 257, 304] for applications to geometric integration of ODEs.

All these sources contain vast bibliographies. Additional references will be given later in
the text.

In what follows the aforementioned sources are used as starting points.

2. Matrices and the Lie product formula

We start with recalling the famous Lie (product) formula6 for matrices. Let Mn be
the set of n×n matrices over C, n ∈ N. The function y(t) = etAy0, t ∈ R+, is the solution
to

dy(t)

dt
= Ay(t)

given y(0) = y0.

Theorem 1 (e.g. [296, 172]). For A1, A2 ∈Mn∥∥∥(e 1
nA1e

1
nA2

)n

− eA1+A2

∥∥∥ ≤ C

n
,

where ∥ · ∥ is an arbitrary matrix norm and C = C(A,B).

Remark 1. The original source for Theorem 1 seems to be untrackable [79].

One possible proof of the Lie product formula is based on the following telescopic
identity: for A,B ∈Mm and any n ∈ N

(2.1) An −Bn =
∑

k=0,n−1

Ak(A−B)Bn−1−k,

5Chapters 1–2 for a general exposition and a survey.
6also referred to as the Trotter (product) formula or the exponential product formula
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where A0 = B0 = Id.
Let Sn = e

1
n (A+B), Tn = e

1
nAe

1
nB . The identity (2.1) implies∥∥∥(e 1

nAe
1
nB

)n

− eA+B
∥∥∥ ≤ n ∥Sn − Tn∥max {∥Tn∥, Sn∥∥}n−1

(2.2)

≤ ne∥A∥+∥B∥ ∥Sn − Tn∥ ,
where the local error is

(2.3) e
1
nA − e

1
nA1e

1
nA2 =

1

2n2
[A2, A1] +O

(
1
n3

)
,

so

∥Sn − Tn∥ ≤ C

n2
,

which finishes the proof7.

Remark 2. (2.1) is an arithmetic identity and thus holds for unbounded operators, too.
Despite its triviality, (2.1) is a standard and well-known tool for estimating the global
error in the terms of local errors and can be encountered on numerous occasions across
the whole selection of works referenced in the present paper.

As we will see, the idea of the proof of Theorem 1 extends into the abstract setting directly
if a suitable form of uniform boundedness (”stability”) holds for max {∥Tn∥, Sn∥∥}n−1

in (2.2). Otherwise, new methods should be proposed.
(2.3) implies that the method is at least of the second order if the matrices A1 and

A2 commute, that is, if
[A1, A2] = A1A2 −A2A1 = 0.

However, if matrices commute, so do the corresponding exponentials and hence the
method is exact in fact (C = 0 in the statement of Theorem 1).

Remark 3. Alternative proofs of Theorem 1 usually use properties of the matrix logarithm
additionally and cannot be easily extended into the general abstract setting.

Now we can give the simplest example of a operator splitting technique.

Example 5. Given A1, A2 ∈Mn consider ODEs

dy(t)

dt
= (A1 +A2)y(t), y(0) = y0,

and

dyk(t)

dt
= Akyk(y), k = 1, 2.

Then, by Theorem 1 for any y0∥∥∥(e t
nA1e

t
nA2

)n

y0 − y(t)
∥∥∥ ≤ C

n
∥y0∥, n ∈ N.

Remark 4. Theorem 1 also finds applications in the theory of matrix Lie groups and the
corresponding homeomorphisms [171], matrix trace inequalities [289] etc.

The next theorem was originally proposed for one two-dimensional difference scheme
and can also be proved by direct calculations.

Theorem 2 (e.g. [319]). For A1, A2 ∈Mn∥∥∥(e 1
2nA1e

1
nA2e

1
2nA1

)n

− eA1+A2

∥∥∥ ≤ C

n2
,

where ∥ · ∥ is an arbitrary matrix norm and C = C(A,B).

7We get the first order for the whole method since (2.3) is a local error which gets propagated exactly
n times. This is a universal rule (cf. [258]).
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Remark 5. There is a common agreement that G. Strang and G.I. Marchuk independently
proposed to use the idea of Theorem 2 to derive one very popular operator splitting
method.

Obviously, Theorem 2 can be used to solve the ODE in Example 5, too:∥∥∥(e t
2nA1e

t
nA2e

t
2nA1

)n

y0 − y(t)
∥∥∥ ≤ C

n2
∥y0∥, n ∈ N.

This is a simple installment of the Strang splitting scheme which achieves the second
order of accuracy with almost no increase in the number of necessary calculations since
three subsequent steps equal(

e
1
2nA1e

1
nA2e

1
2nA1

)3

= e
1
2nA1

(
e

1
nA2e

1
nA1

)2

e
1
nA2e

1
2nA1

and so on.
The local error of the Strang splitting is [189]

(2.4) eh(A1+A2) − e
h
2 A1ehA2e

h
2 A1 =

h3

24
([A2, [A2, A1]] + 2[A1, [A2, A1]]) +O(h4).

3. Semigroups and the Chernoff product formula for abstract Cauchy
problems

To venture forth, we need to recall standard material on semigroups and the ab-
stract Cauchy problem (ACP), the Trotter-Kato theorems and the Chernoff product
formula [286, 152, 121, 93, 202, 76, 122]. We omit some details and technicalities. All
integrals are Bochner integrals.

Let X be a Banach space. A family (Tt)t≥0 of bounded linear operators on X is a
(one-parameter) strongly continuous semigroup, or C0−semigroup, if T0 = Id, Tt+s =
TtTs, s, t ≥ 0, and the mapping t 7→ Tt, t ≥ 0, is strongly continuous.

We denote the domain of a linear operator A by D(A).
A linear operator A is the generator of a C0−semigroup (Tt)t≥0 if

(3.1) Ax = lim
s→0+

1

s
(Tsx− x)

for all x in
D(A) = {x | the limit in (3.1) exists} .

A generator is closed and densely defined. The pair (A,D(A)) defines the semigroup
uniquely. For any C0−semigroup (Tt)t≥0 there exists M ≥ 1 and ω ≥ 0 s.t.

∥Tt∥ ≤Meωt, t ≥ 0.

If M = 1 and ω = 0 (Tt)t≥0 is called a contraction semigroup.
Though it is customary to write (etA)t∈R+ for the semigroup generated by A we do

not follow this convention unless stated otherwise.

Example 6. If A is a bounded linear operator (e.g. A ∈ Mn) the family {etA | t ≥ 0} is
a C0−semigroup with generator A.

Example 7. Any Feller Rm−valued process {ξ(t) | t ≥ 0} automatically defines a con-
traction C0−semigroup

Ttf(x) = Ex f(ξ(t)), f ∈ C0(Rm),

where C0(Rm) is the space of continuous function that vanish at infinity [122, 65]8. In
particular, Feller’s one-dimensional diffusion on an interval I has generator

A =
1

2
a(x)

d2

dx2
+ b(x)

d

dx
+ c(x),

8The very definition of a Feller process may vary between authors [65].



AN INTRODUCTION TO OPERATOR SPLITTING METHODS 57

while the precise description of D(A) incorporates boundary conditions (and thus the
behavior of the process at the boundary) and c corresponds to killing. Note that it is not
possible in general to give a full description of D(A) for a Feller process and it is often
sufficient to consider a core L instead, that is, a set L ⊂ D(A) such that the closure of
A|L equals A [122].

Remark 6. However, the heat semigroup is not a C0−semigroup on Cb(Rm). Thus one
should carefully choose a space that a semigroup acts on.

Example 8. A Wiener process analogously defines a C0−semigroup on L2(Rm) with
generator 1

2∆ and D(A) = W 2,2(Rm) [38]. However, the possibility to extend a Feller
semigroup onto some Lp is linked to the properties of the adjoint operator and thus
to properties of Fokker-Plank-Kolmogorov equations (for discussions and conditions see
e.g. [320, 334, 65] and [121, Section VI.4]).

Assume that A is a densely defined closed linear operator with a non-empty resolvent
set on a Banach space X. We consider the autonomous inhomogeneous abstract Cauchy
problem

dy(t)

dt
= Ay(t) + f(t), t ∈ (0;T )

y(0) = y0.(3.2)

Given y0 ∈ D(A) a classical solution to (3.2) is a X−valued function u s.t. y(t) ∈
D(A), t ∈ [0;T ], y is continuous on [0;T ] and continuously differentiable (in the terms of
the norm on X) on (0;T ), and (3.2) holds. A homogeneous ACP is well-posed if it has
the unique classical solution that depends (uniformly) continuously on the initial data.

The following result gives the well-known relation ACPs and C0−semigroups.

Theorem 3. (1) The homogeneous ACP (3.2) is well-posed if and only if A gener-
ates a C0−semigroup.

(2) If A generates a C0−semigroup (Tt)t≥0, y0 ∈ D(A), the function f ∈ L1((0;T ))∩
C((0;T )) takes values in D(A) and Af ∈ L1((0;T )) then the function

(3.3) y(t) = Tty0 +

∫ t

0

Tt−sf(s)ds, t ∈ [0;T ],

is the unique classical solution of (3.2).

There are other types of solution. In particular, the mild solution (3.3) is often used
when the functions f and y fail to satisfy regularity assumptions stated above.

The non-autonomous ACP

dy(t)

dt
= A(t)y(t) + f(t), t ∈ (s;T )

y(s) = y0,(3.4)

is called an evolution problem. A classical solution is defined similarly to the autonomous
case but no simple analog of Theorem 3 exists (see [286, 152] for the theory and [264,
308] and [60, Remark 1.12] for a survey and references). Moreover, (3.4) requires the
compatibility of {D(A(t)) | t ∈ [0;T ]} if the domains in question are time-dependent,

a standard condition being ∩t∈[0;T ]D(A(t)) = X. The equation (3.4) is then solved for
x ∈ ∩t∈[0;T ]D(A(t)).

However, the well-posedness of a non-autonomous homogeneous ACP implies the exis-
tence of an evolution family of bounded operators (also called propagators) (Us,t)0≤s≤t≤T

s.t. Ut,t = Id, Us,tUt,r = Us,r, s ≤ t ≤ r, and the mapping (s, t) 7→ Us,t is strongly con-
tinuous. For any fixed s ∈ [0;T ] the solution for

dy(s; t)

dt
= A(t)y(s; t), t ∈ (s;T ),
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y(s; s) = y0

is then given via

y(s; t) = Us,ty0, t ∈ [s;T ],

and a mild solution to the analog of (3.4) with f ∈ L1((0;T )) is given via

y(s; t) = Us,ty0 +

∫ t

s

Ut,rf(r)dr, t ∈ [s;T ],

for any s ∈ [0;T ].

Remark 7. In general, non-autonomous inhomogeneous ACPs, unavoidable in applica-
tions, may behave in an unexpected way and one should be careful to draw conclusions
about the properties of the corresponding propagators [264].

Until further notice, we consider only homogeneous ACPs.
The following theorem is a version of the celebrated Trotter-Kato theorem9 whose

general form provides a basis for numerous approximation schemes in the theory of
semigroups, including Yosida approximations10. One can consult [155, 154, 202] for a
survey of the general approximation theory of C0− semigroups, some results about the
rate of the convergence (in the operator norm, too) and further references. A number
of references concerning the Chernoff and Trotter-Kato product formulas will be given
later.

Remark 8. [290, 292, 293, 291] use probabilistic methods to develop a unified exposition
of many approximation formulas (see also [27]).

Roughly speaking, Trotter-Kato theorems connect convergence of semigroups, their
resolvents and generators.

Theorem 4. Let (Tnt)t≥0, n ∈ N, be C0−semigroups on a Banach space X with gener-
ators (An, D(An)), n ∈ N, s.t.

(3.5) ∥Tnt∥ ≤Meωt, t ≥ 0, n ∈ N,

for some M ≥ 1, ω ∈ R. For fixed λ > ω and the following assertions

(1) There exists a densely defined operator (A,D(A)) s.t. An → A,n→ ∞, strongly
on a core of A and the range of λId−A is dense in X;

(2) There exists a bounded linear operator R with dense range s.t. (An − λId)−1 →
R,n→ ∞, strongly;

(3) The semigroups (Tnt)t≥0, n ∈ N, converge strongly and uniformly on bounded sets
to a semigroup with generator B s.t. R = (B − λId)−1;

it holds that (1) ⇒ (2) and (2) ⇔ (3).

Remark 9. A probabilistic formulation of Theorem 4 for Feller processes can be found
in [210]. Trotter-Kato theorems are behind some results about approximations of Feller
processes with Markov chains, in particular [210].

Remark 10. Counterexamples for the Trotter-Kato theorem, in particular of probabilis-
tic origin, can be found in [37]; variational and nonlinear versions of the Trotter-Kato
theorem, in [202]; generalizations for norm operator topology, in [351, 68].

The next theorem is called the Chernoff product formula and is another fundamental
tool in the approximation theory for C0−semigroups.

9occasionally called the Trotter-Neveu-Kato theorem (e.g [351, 68, 37])
10For the exposition of SPDEs in the terms of Yosida approximations see [162].
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Theorem 5. Let V (t), t ≥ 0, be a family of bounded linear operators s.t. V (0) = Id and

(3.6) ∥V (t)n∥ ≤Meωnt, t ≥ 0, n ∈ N,

for some M ∈ R+, ω ∈ R, and let the limit

Ax = lim
t→0

V (t)x− x

t

exist for all x ∈ D where D and (λId− A)D are dense subspaces of X for some λ > ω.
Then the closure of A generates a C0−semigroup (Tt)t≥0 and for any sequence of positive
integers (kn)n∈N and any positive sequence (tn)n∈N satisfying kntn → t, tn → 0, n→ ∞,

(3.7) Ttx = lim
n→∞

(Vtn)
knx

for any x ∈ D. If tnkn = t, n ∈ N, the convergence is uniform on bounded intervals.

The formula (3.7) provides an approximation of the semigroup (Tt)t≥0 in the terms
of the family V. The exposition of the method of obtaining such approximations is given
in a survey [55]; further references and applications to stochastic processes including
those on manifolds and in domains with Dirichlet and Robin boundary conditions can
be found in [55, 53, 52, 256, 56, 277, 310, 274, 318, 256, 279, 316, 54, 57, 56, 53, 317].
Other references given later in the text for the Trotter-Kato theorem in the context of
the approximation theory are relevant, too.

The following additional references illustrate a possibility to strengthen the conclusion
of the Chernoff product formula: [351, 350, 352, 68, 138, 139, 295] establish convergence
in the operator norm an/or obtain estimates of the rate of the convergence for self-
adjoint operators and quasi-sectorial contraction semigroups etc.; [285, 350, 351, 68]
obtain estimates by using probabilistic arguments. The convergence can be arbitrary
slow and may not hold in a stronger topology.

Example 9. Theorem 5 yields the exponential formula

(3.8) Tt = lim
n→∞

(
Id− t

n
A
)−n

.

Example 10. If A is a bounded operator Theorem 5 can be used to deduce

(3.9) etA = lim
n→∞

(
Id +

t

n
A

)n

.

if the series representation of etA is taken as a definition of the exponential.

Example 11. ([55]; cf. [233]) Assume that real-valued functions a, σ are Lipschitz con-
tinuous and bounded, infu∈R |σ(u)| > 0 and consider an SDE

dx(t) = a(x(t))dt+ σ(x(t))dw(t), t ∈ [0;T ],

where w is a standard Wiener process. The Euler-Maruyama approximations are

yn,k+1 = yn,k + a(yn,k)
T

n
+ σ(yn,k)

(
w
(T (k + 1)

n

)
− w

(Tk
n

))
,

k = 0, n− 1, n ∈ N.

For any f ∈ Lip(R)
E f(yn,n) → E f(x(T )), n→ ∞.

On the other side, one can show that the family (V (t))t≥0 defined via

V (t)f(x) =
1

(2πt)1/2σ(x)

∫
R
e
− (y−x−a(x)t)2

2tσ(x)2 f(y)dy, t ≥ 0,
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satisfies the conditions of Theorem 5 implying

(3.10) E f(x(T )) = lim
n→∞

V
(T
n

)n

f(x)

for sufficiently smooth compactly supported f. See also [318, 256, 317] for other applica-
tions of the Chernoff product formula to pathwise approximations of random processes.
Note that this result does not recover the first order of the weak Euler-Maruyama scheme.

Example 12. ([56]) Let gµ be the one-dimensional Gaussian density with 0 mean and
variance µ. (3.10) can be rewritten as

Ex0
f(x(T )) = lim

n→∞

∫
Rn

f(xn) exp
{ ∑
k=1,n

a(xk−1)(xk − xk−1)− t
2na(xk−1)

2

σ(xk−1)2

}
×

∏
k=1,n

gTσ(xk−1)2

n

(xk − xk−1)dx1 . . . dxn.(3.11)

Such a representation of the original semigroup as the limit of iterated integrals w.r.t.
some finite-dimensional projections of a (pseudo)measure on a phase space (the Wiener
measure on C([0;T ]) here) is called the Feynman formula [316]11 and presents an alter-
native approach to the Feynman-Kac formula. See [55, 52, 318, 256, 279, 316, 54, 57, 56,
53, 317] for other results on Feynman formulas.

Example 13. [55] Setting

dy(y) = σ(y(t))dw(t), t ∈ [0;T ],

and passing to the limit in (3.10) and (3.11) gives a particular case of the Girsanov
theorem (e.g. [238]) for x and y :

Ex0 f(x(T )) = Ex0 f(y(T )) exp
{∫ T

0

a(y(t))

σ(y(t))
dw(t)− 1

2

∫ T

0

a(y(t))2

σ(y(t))2
dt
}
.

Remark 11. The behavior of a solution of an PDE and its differentiability at t = 0
(and thus the behavior of the corresponding semigroup) can be a subtle moment in
applications, particularly when a probabilistic interpretation is used. A typical example
is the function u(x, t) = Ex f(ξ(min{t, τ})), where τ is the moment a Feller process ξ
hits the boundary of a domain D. If f =1∂D then u = P(τ < t) is discontinuous at t = 0
though u ∈ C2,1(Dint × (0;∞)) usually. As a result, the weak variational formulation in
the terms of Gelfand triples [284] or the weak distributional formulation [234, 332] can
be suggested as an alternative (see also [129, 342]).

Remark 12. One particular example of the versatility of the Chernoff product formula
is that it can be used to prove the central limit theorem [152] .

4. The Trotter-Kato formula

Now we state one of core results of the theory of abstract operator splitting, the
Trotter-Kato formula.

Theorem 6. Let (Tt)t≥0 and (St)t≥0 be C0−semigroups on a Banach space X with
generators (A,D(A)) and (B,D(B)), respectively, s.t.

(4.1) ∥Tn
t S

n
t ∥ ≤Meωnt, n ∈ N, t ≥ 0,

11The definition of the Feynman formula may slightly vary (c.f. [57]).
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for some M ≥ 1 and ω ∈ R. Define C = A + B on D = D(A) ∩ D(B). If D and
(λId − A − B)D for some λ > ω are dense in X, then the closure of C generates a
C0−semigroup (Ut)t≥0 and

Utx = lim
n→∞

(
Tt/nSt/n

)n
x

uniformly on compact intervals in t.

Theorem 6 can be formulated for a finite number of semigroups (e.g. [286]).

Remark 13. This result belongs to H.E. Trotter and T. Kato. Yu.L. Daletskii also
obtained similar product formulae at the same time (see [92] for references).

Remark 14. The choice of the topology matters: the convergence may not hold in a
stronger topology [268].

Remark 15. The stability assumption (4.1) cannot be dropped [228].

Example 14. Assume that f is a complex-valued function and
∫
Rd |f(x)|2dx = 1. The

Shrödinger operator

H =
1

2
∆ + V

describes the motion of a (spinless) quantum particle under the action of the real-valued
potential V as follows. The wave function u is the solution of

∂u

∂t
= iHu,

u|t=0 = f,(4.2)

and the probability density at time t of the position of the particle is |u(x, t)|2. (4.2) can
be interpreted as an ACP

du(t)

dt
=

( i
2
∆ + iV

)
u(t)

in some Hilbert space. The operatorH is essentially self-adjoint (that is, has a self-adjoint
extension) under some rather mild assumptions on V, so the semigroup generated by iH
is an unitary C0−semigroup, in particular12. Since the semigroups for i

2∆ and iV are

Stf(x) =
1

(2iπt)
d/2

∫
Rd

e
i∥x−y∥2

2t f(y)dy,

Ttf(x) = eitV (x)f(x), t ≥ 0,

respectively, the Trotter-Kato theorem implies

u(x0, t) = lim
n→∞

(
St/nTt/n

)n
f(x0)

= lim
n→∞

1

(2iπt)
nd/2

∫
Rnd

exp
{ in
2t

∑
k=0,n−1

∥xk − xk+1∥2 +
it

n

∑
k=0,n−1

V (xk+1)
}

× f(xn)dx1 . . . dxn,

which is an polygonal approximation for the Feynman integral over all histories (trajec-
tories in the space Cx([0; t]) of continuous trajectories starting at x) [296, 297, 152, 209]

C

∫
Cx([0;T ])

eiS(ω)f(ω(s))
∏

0≤s≤t

dωs,(4.3)

12We skip all technical aspects associated with the existence of multiple extensions etc., and we do
not mention symmetric and skew-adjoint operators even though treating these issues is an integral part
of quantum mechanics.
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where

S(ω) =

∫ t

0

(1
2

∥∥∥dω(s)
ds

∥∥∥2 + V (ω(s))
)
ds

is the action integral. The expression (4.3) is purely formal and the Trotter-Kato formula
is a standard way to give this representation a rigorous meaning.

Example 15. ([296, 315, 209, 246, 172, 297]) It is customary for textbooks on quantum
mechanics to derive the Feynman-Kac formula for Shrödinger operators as a corollary of
the Trotter-Kato formula. To understand the idea formally recall that the solution to the
following autonomous homogeneous PDE (both assumptions are used in what follows)

∂u(x, t)

∂t
=

1

2
∆u(x, t) + V (x)u(x, t), t ≥ 0, x ∈ Rd,

u(x, 0) = f(x), x ∈ Rd,

is given via

u(x, t) = E f(x+ w(t))e
∫ t
0
V (x+w(s))ds,

where w is a standard Wiener process. On the other hand, the solution to

∂q(x, t)

∂t
= V (x)q(x, t)

is

q(x, t) = Stq(x, 0) = eV (x)tq(x, 0),

so combining this semigroup with the heat semigroup (Tt)t≥0 in accordance with the
Trotter-Kato theorem yields the approximations(

S1/n ◦ T1/n
)n

f(x) = E f(x+ w(t)) exp
{ t
n

∑
k=0,n−1

V
(
x+ w(t)− w

(kt
n

))}
= E f(x+ w(t)) exp

{ t
n

∑
k=1,n

V
(
x+ w

(kt
n

))}
,

n ∈ N,

of the solution u (similarly for (T1/n ◦ S1/n)
n)).

Remark 16. It should be noted that precise formulations of physical and probabilistic
versions of the Feynman-Kac formula may be dictated by different points of focus: physi-
cists are often more concerned with results for the Laplacian and singular or irregular
(in different senses) potentials (e.g. those belonging to Kato classes or L∞(Rd))13. This
remark applies primarily to textbooks.

Example 16. ([233]; cf. Example 13) It is possible to derive the Girsanov theorem using
the Trotter-Kato formula (under some assumptions on the regularity of drift)14. Follow-
ing the original source, we explain some intuition behind this. Let (Tt)t≥0 be the heat
semigroup. The semigroup (St)t≥0

∂Stf(x)

∂t
= a(x) · ∇Stf(x)

is alternatively given for small t as

Stf(x) = f(ξx(t)) = f(x) +∇f(x) · (ξx(t)− x) + o(t)

= f(x) + t∇f(x) · a(x) + o(t),

13On this path, various approximations of the original problem with ACPs with ”better” coefficients

are needed along with the corresponding limit theorems.
14[233] also uses the Euler-Maruyama scheme to prove the Girsanov theorem.
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where ξx(t) = x+
∫ t

0
a(ξx(s))ds. It can thus be shown that

(Tt ◦ St) f(x) = E (f(x+ w(t)) + ta(x) · ∇f(x+ w(t)))

+ tE
∑

k=1,m

∂f(x+ w(t))

∂xk

∂a(x)

∂xk
wk(t) + o(t)

= E f(x+ w(t))(1 + a(x) · w(t)) + o(t)

= E f(x+ w(t))ea(x)·w(t)− t
2∥a(x)∥

2

+ o(t),

for a Wiener process w since15

E t∇f(x+ w(t)) = E f(x+ w(t))w(t).

Example 17. The Trotter-Kato formula for self-adjoint operators [296, 172] is usually
written16 as

lim
n→∞

(
e

i
nA1e

i
nA2

)n

= eiA

where A1, A2 are self-adjoint operators and A is the self-adjoint extension of (A1 +
A2, D(A1) ∩D(A2)). If A1 and A2 are bounded below additionally:

inf
x∈D(Ak)

(x,Akx)

∥x∥2
> −∞, k = 1, 2,

we also have

lim
n→∞

(
e−

1
nA1e−

1
nA2

)n

= e−A.

The importance of these versions for physics follows from the Stone theorem: on Hilbert
spaces, every unitary C0−group has a generator of the form iA for some self-adjoint A and
every symmetric C0−semigroup has a generator of the form −A for some bounded below
self-adjoint A, and this is exactly the situation of quantum mechanics. The Trotter-
Kato formula admits special proofs independent of the Trotter-Kato theorems in this
case. In particular, if A1 + A2 is densely defined and self-adjoint on D(A1) ∩ D(A2)
the proof is rather direct. For further references and extensions see [246, 209, 315], in
particular. However, the rate of the convergence was found only recently and under
additional assumptions (see e.g. Example 27 and related references).

Example 18. To formulate a formal non-autonomous version of the Trotter-Kato for-
mula, consider operators A0, A1, A2 such that the corresponding non-autonomous ACPs

are well-posed with propagators (T
(k)
s,t )0≤s≤t≤T , k = 0, 1, 2, respectively. Additionally, as-

sume that D(A0(t)), D(A1(t)), D(A2(t)), do not depend on t, and A0(t) = A1(t)+A2(t)
on D(A0(0)), t ∈ [0;T ]. Then one expects for any s, t ∈ [0;T ], s ≤ t,

lim
n→∞

T
(1)

s+
(n−1)t

n ,s+t
◦ T (2)

s+
(n−1)t

n ,s+t
◦ . . . ◦ T (1)

s,s+ t
n

◦ T (2)

s,s+ t
n

= T 0
s,t.

Note that the condition of the domains being constant is a rather limiting one and
excludes time-dependent boundary conditions in general as BC is usually incorporated
into the very description of a domain.

Example 19. ([121]; also [60]) The Trotter-Kato formula can be used to derive an ap-
proximation of a non-autonomous ACP by autonomous ACPs with constant coefficients
(cf. Example 18). For that, assume that (Us,t)0≤s≤t≤T is the propagator for some well-

posed non-autonomous ACP and define semigroups (T
(s,n,k)
l )s≤l≤T , k = 1, n, n ∈ N, s ∈

[0;T ], for the equations

dys,n,k(l)

dl
= As,n,kys,n,k(l), l ∈ [0;T ],

15This is a calculation from the Malliavin calculus. See also Section 11.
16Here (etC)t≥0 denote the semigroup with generator C.
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ys,n,k(0) = y0,

As,n,k = A
(
s+

kt

n

)
,

so that ys,n,k(l) = T
(s,n,k)
l y0, l ∈ [0;T ]. Then

lim
n→∞

T
(s,n,n)
t
n

◦ T (s,n,n−1)
t
n

◦ . . . ◦ T (s,n,1)
t
n

= Us,s+t

strongly on ∩t∈[0;T ]D(At) uniformly in (s; t) on compact sets.

Remark 17. In Example 14, D(∆)∩D(V ·) may be too small or just {0} even if the sum
1
2∆ + V can be defined via quadratic forms [209, Chapter 10][172, Chapter 9]. In fact,
one can use the Trotter-Kato formula to define the generalized sum of two operators with
incompatible domains [152, Remark 8.17].

Remark 18. The original formulation of the Trotter-Kato theorem for PDEs requires
boundary conditions to be time-independent. In general, adding non-autonomous bound-
ary and initial conditions can lead to significant technical issues.

Up to this moment, almost no attention has been given to the question of the rate of
convergence even though it is an extremely important question for applications. Another
feature of the formulation of Theorem 6 is the usage of the strong topology. We know
that either question may not have stronger results due to the references given for the
Chernoff product formula: the rate of convergence can be arbitrary slow and convergence
in stronger topologies may not hold. To understand the reasons behind these facts and
thus to emphasize some limitations of the standard version of the Trotter-Kato formula
we need to have a short discussion of the proof of Theorem 5 since Theorem 6 is a direct
corollary of Theorem 5.

Subsequent reasoning is well known.

Remark 19. Note that the original proof of Theorem 1 falls apart as soon as operators
involved are unbounded (e.g. they contain differentiation).

The condition for the sets D and (λId− A) to be dense in X implies (in a nontrivial
way) that a densely defined closed A exists and is indeed a generator of a C0−semigroup
so this condition can be seen [121] as an extension of the Hille-Yosida theorem17. In fact,
some formulations of the Trotter-Kato formula just require A+B to be a generator of a
C0−semigroup. The same applies to the Chernoff product formula (e.g. [93]). In practical
terms, this means that one has to be careful with domains when trying to replicate the
original proof.

The rest of the proof of Theorem 5 consists of two separate claims. The first one relies
on the following observation: if A is a linear bounded operator satisfying

sup
n∈N

∥An∥ ≤M

and ξ is a Poisson random variable with mean n ∈ N then for any x ∈ X∥∥∥(An − en(A−Id)
)
x
∥∥∥ ≤ Var(ξ)1/2∥(A− Id)x∥ = n1/2∥(A− Id)x∥,(4.4)

and therefore for bounded operators

An =
n

t

(
V
( t
n

)
− Id

)
, n ∈ N,

one can prove∥∥∥((Tt − V
( t
n

))
x
∥∥∥ ≤

∥∥∥(Tt − etAn

)
x
∥∥∥+

∥∥∥(etAn − V
( t
n

))
x
∥∥∥

17the implications (1) ⇒ (2), (3) in Theorem 4
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≤
∥∥∥(Tt − etAn

)
x
∥∥∥+

t

n1/2

∥∥∥V ( t
n )− Id

t/n
x
∥∥∥,

where

lim
n→∞

∥∥∥V ( t
n )− Id

t/n
x
∥∥∥ = ∥Ax∥

by assumption. Thus it is left to prove

(4.5)
∥∥(Tt − etAn

)
x
∥∥ → 0, n→ ∞.

This is the second part of the proof. Since An → A,n → ∞, the Trotter-Kato theorem
implies (4.5). But there are no possibilities to either have a bound for this expression or
to replace strong convergence with convergence in the operator norm in general because
the proof of the Trotter-Kato theorem does not produce such results internally. As a
result, the standard Chernoff product formula and Trotter-Kato formula are formulated
in the terms of strong convergence and with no bounds.

It may be possible to refine (4.4) and/or strengthen the convergence in the Trotter-
Kato theorem for special classes of generators (e.g. self-adjoint or maximal accretive
ones). Then one can combine improved estimates in (4.4) (in particular, those obtained
by using properties of the Poisson distribution) and consistency estimates for the Trotter-
Kato theorem to yield the conclusion about the convergence in the operator norm and to
provide estimates for its speed [68, 351, 285, 350, 352] (see also [286, Chapter 3, Lemma
3.5]). This may be compared with [155, 154] where estimates of the speed of convergence
often include an original element x. See also [202, 203] for other results of this type. Some
other references concerning bounds for the rate of convergence will be added later.

The decomposition of the proof and conditions of Theorems 5 and 6 is an illustra-
tion of one overarching principle of numerical analysis: stability and consistency imply
convergence. This fundamental result is known as the Lax-Richtmyer theorem (the Lax
equivalence theorem) in the context of finite difference approximations of PDEs:

Theorem 7. A consistent finite difference scheme for a well-posed linear initial value
problem is convergent if and only if it is stable.

This principle extends to other settings and situations as soon as an approximation
scheme arises (see [202] for a discussion in the setting of evolution equations and [151,
Chapter 3] for a discussion in the case of the Trotter-Kato formula).

Conditions (3.5), (3.6) and (4.1) give stability of a scheme while the convergence of
generators or the behavior of the family (V (t))t≥0 at 0 are consistency conditions in
our case etc. However, one should not forget that, contrary to the case of the Lax-
Richtmyer theorem, the principle ”stability and consistency imply convergence” is no
longer a rigorous statement and does not also reflect the full nature of proofs since such
proofs deal with ranges and domain of unbounded operators to obtain the generator of
a C0−semigroup. On other side, this principle remains a extremely powerful tool often
encountered in situations where various bounds are being developed.

Remark 20. For a discussion of consistency in the terms of the resolvent see [203]; for
a discussion of a possible trade-off between consistency and stability, [203, 190]; for a
version for inhomogeneous ACPs, [190]18.

Remark 21. Compositions of generators of contraction semigroups automatically are
stable; alternatively, a method is expected to be stable if the operators involved com-
mute [31]. This is a common duality in the theory of (multiplicative) splitting methods.

18[307] gives an example of a non-stable additive splitting scheme.



66 M.B. VOVCHANSKYI

It should also be obvious that the aforementioned scheme of the classical proof19 is not
the only possible way to establish stronger versions of the Trotter-Kato formula. This
topic will be revisited later.

Remark 22. Let (Rs,t)0≤s≤t be the solution operator of an ACP with initial value y0 and

let (R̂k,n)k=0,n−1,n∈N be solution operators of some recurrent approximation scheme on

the uniform (in time) mesh:

ŷn,k+1 = R̂k,nŷn,k, k = 0, n− 1, n ∈ N,

where ŷn,n, n ∈ N, converge to the original solution R0,ty0. Setting
∏

j=n,n−1 R̂j,n = Id
we have

(4.6) R0,ty0 − yn,n =
∏

k=0,n−1

R̂k,n(y0 − ŷn,0)

+
∑

k=0,n−1

∏
j=k+1,n−1

R̂j,n

(
R̂k,n −R k

n , k+1
n

)
R0, kn

y0.

That is, the global error is the sum of propagated local truncation errors(
R̂k,n −R k

n , k+1
n

)
R0, kn

y0, k = 0, n− 1, n ∈ N,

and the propagated initial error. (2.1) is a partial case of this decomposition.

Example 20. Revisiting (2.1)–(2.2) we can formulate the following typical meta theorem:
if A,B,C are generators of contraction semigroups (Tt)t≥0, (St)t≥0, (Ut)t≥0 respectively,
and for some x and t ≥ 0

(4.7) ∥
(
Tt/nSt/n − Ut/n

)
x∥ ≤ Cn−p∥x∥

for some p, C > 0 then ∥∥((Tt/nSt/n

)n − Ut

)
x
∥∥ ≤ Cn−p+1∥x∥.

Obviously, the tricky part is to obtain the estimate in (4.7), which is often achieved by
ad hoc methods.

Example 21. ([123]) Consider the PDE

∂u

∂t
=

1

2
∆u+ g(u), u(x, 0) = u0(x),

x ∈ Rm, t ≥ 0,

where g ∈ C2(R) has bounded derivatives and satisfies g(0) = 0. Let (Tt)t≥0 be the heat
semigroup and

dFt(x)

dt
= g(Ft(x)), F0(x) = x.

Then it is possible, by using the Itô formula and properties of the Wiener process, to
show that the local error satisfies

(4.8) u(x, t)− Tt (Ft(u0(x))) = −E

∫ t

0

dFs (ut−s(x+ w(s))) ,

where w is a Wiener process, which can be used to derive the consistency bound

∥u(t)− (Tt ◦ Ft)u0∥L∞(Rm) ≤ Ct2∥∇u0∥L∞(Rm).

When combined with energy stability estimates for the original semigroup and Exam-
ple 20, this implies that the Trotter-Kato formula is first order accurate. Note that the
rate of the convergence is obtained by using probabilistic techniques.

19However, it is used very often as a general scheme, especially in an analytic setting.
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Remark 23. [123] also establishes Lp−estimates (in the linear case) and results for the
Ft◦Tt−version of the Trotter-Kato formula and for the case when one step approximation
is Ft/2 ◦ Tt ◦ Ft/2 (the Strang splitting).

For other generalizations of the Trotter-Kato, bounds, further developments, ex-
tensions to other types of semigroups and references see, besides the sources listed
above, [298, 68, 272, 270, 195, 196, 209, 191, 66, 124, 265, 353, 176, 177, 271, 192,
199, 198, 128, 31, 336, 267, 338, 339, 273, 268, 67, 269, 337, 85] (both for the Chernoff
product formula and the Trotter-Kato formula).

In particular, the non-autonomous case is studied in [92, 196, 265, 177, 60, 121, 128,
336, 338, 339, 269, 337]. In particular, [338, 339, 337] study time-dependent domains.

Versions of the (non-autonomous) Trotter-Kato formula in alternative settings are
established in [330, 92, 119, 202, 60]. In particular, [330, 119] use the framework of
Gelfand triples (rigged Hilbert spaces).

For results on nonlinear Trotter-Kato formulae, see references in [296, Supplement
VIII.8].

Remark 24. Splitting on the level of semigroups means splitting in time. Numerical
schemes also include spatial discretization in practice. For results about combining time
splitting and spatial discretization (in particular, a version of the Chernoff formula)
see [202, 62, 61]. See also Remark 42.

Remark 25. Revisiting examples for Feller processes, one can see that the action of
the corresponding semigroup is defined and well behaved for f ∈ C0(Rn) (Lp(Rn)) and
not necessarily for functions outside of such classes though such function may appear in
applications. See [112] for one extension of splitting schemes to larger classes of functions
with preservation of the rate of the convergence for SPDEs.

5. A general formulation of a splitting scheme. Multiplicative and
additive splitting methods

The previous sections contain a rigorous description of the Trotter-Kato formula for
semigroups. Henceforward we care more about ideas and illustrations and no longer
aim to give precise formulations as we step into the domain of general operator split-
ting methods as numerical and theoretical schemes to approximate an original solution
without any a priori expectations about convergence or a unified exposition.

Abstract initial value problems (IVPs)20 with no assumptions on the corresponding
operators (e.g. they can be multivalued or discontinuous) are used. We mostly follow
the exposition in [151, 189].

Consider the autonomous IVP for a possibly nonlinear A

du

dt
+A(u) = 0, u(0) = u0, t ∈ [0;T ].

Assume that

A =
∑

k=1,m

Ak

for some Ak, k = 1,m.
In this section we write A(u) and similar terms in the LHS of an IVP. Later in the

text we will resume writing them in the RHS.
Assume T is fixed. Let h = T

N be a fixed time step for some integer N. Set tn = nh
so t0, . . . , tN form a partition of [0;T ].

20We do not call them abstract Cauchy problem as a discussion of semigroups involved is neither
provided nor needed.
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The following scheme is a general version of the Trotter-Kato formula and is called
the Lie-Trotter splitting scheme. In particular, it is a the general version of Theorem 1:

lim
n→∞

(
e

1
nA1 · · · e 1

nAm

)n

= e
∑

j=1,m Aj .

In the general setting, define vj,n, j = 1,m, n = 0, N − 1 as follows: for any n = 0, N − 1

dvj,n(t)

dt
+Ajvj,n = 0, t ∈ [tn; tn+1], j = 1,m,

vj,n(tn) = vj−1,n(tn+1), j = 2,m,

v1,n(tn) = vm,n−1(tn),

v1,0(0) = u0.(5.1)

Then

u(tn+1) ≈ vm,n(tn+1), n = 0, N − 1.

In general, one expects the Lie-Trotter splitting to be first order accurate. However, this
conclusion is not guaranteed.

Adjustments in the non-autonomous case are standard (though they may be nontrivial
mathematically when treated rigorously): e.g. time is considered as an additional variable

τ(t) with dτ(t)
dt = 1 and a new operator (A,−1) is introduced or the explicit approach

from Example 18 is used. We will use the second option for all other schemes.
Now we consider

du(t)

dt
+A(t, u(t)), t ∈ [0;T ].

Assumem = 2. The next scheme is called the Strang splitting scheme and is asymmetrical
in the way A1 and A2 are treated. For matrices, it is Theorem 2. To introduce an abstract
formulation, consider v1,n, v2,n, ṽ1,n, n = 0, N − 1, defined via

dv1,n(t)

dt
+A1(t, v1,n(t)) = 0, t ∈

[
tn, tn +

h

2

]
,

dv2,n(t)

dt
+A2(t, v2,n(t)) = 0, t ∈ [tn, tn+1],

ṽ1,n(t)

dt
+A1(t, ṽ1,n(t)) = 0, t ∈

[
tn +

h

2
, tn+1

]
,

v1,n(tn) = ṽ1,n−1(tn), v2,n(tn) = v1,n

(
tn +

h

2

)
, ṽ1,n(tn) = v2,n(tn+1),

ṽ1,−1(0) = u0.

Then

u(tn+1) ≈ ṽ1,n(tn+1), n = 0, N − 1.

One does expect the second order in the general case but, as earlier, this is not guaranteed.
We will not repeat this universal remark on the absence of a universal rate for any

given splitting scheme in future.

Remark 26. The Strang splitting is quite popular not only due to it being of the sec-
ond order, but also because it does not require doubling the number of computations
(compared to the Lie splitting), as we have already seen in the finite-dimensional case.

Indeed, if the propagator for the semigroup of Ak is (S
(k)
t )t, k = 1, 2, we get21

u(T ) ≈ ṽ2,N−1(tN )

= S
(2)
tN−1+h/2,tN

◦ S(1)
tN−1,tN ◦

∏
k=0,N−2

[
S
(2)
tk+h/2,tk+1+h/2 ◦ S

(1)
tk,tk+1

]
◦ S(2)

0,h/2u0.

21Here
∏

is used instead of ◦ to make the expression readable.
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The Lie-Trotter and Strang splitting schemes are multiplicative splitting schemes: the
formal semigroups for A1, . . . , Am are combined via composition exclusively.

The following Peaceman-Rachford and Douglas-Rachford operator splitting schemes
are called additive. We have m = 2. To formulate the underlying idea, consider an ODE

du

dt
= f(t, u(t)), u(0) = 0.

The solution u can be approximated by using the explicit forward Euler method:

un+1 = un + hf(tn, un), u(tn) ≈ un,

or by using the implicit backward Euler method

ũn+1 = ũn + hf(tn+1, ũn+1), u(tn) ≈ ũn.

For du
dt +Au(t) = 0 we formally have

un+1 − un
h

+Aun = 0,

un+1 = (A− hId)un

and

ũn+1 − ũn
h

+Aũn+1 = 0,

ũn+1 = (A+ hId)−1ũn,

respectively (cf. 3.8 and 3.9).
The idea of the Peaceman-Rachford splitting is as follows: divide [tn, tn+1] in half, run

the forward Euler scheme for A1 and the backward Euler scheme for A2 on [tn, tn + h
2 ]

and run the same algorithm on other half of the interval, switching the roles of A1 and
A2. Setting t̃n = tn + h

2 we have

ũn − un
h
2

+A1(tn, un) +A2(t̃n, ũn) = 0,

un+1 − ũn
h
2

+A1(tn+1, un+1) +A2(t̃n, ũn) = 0,

u(tn) ≈ un.

The autonomous linear version is

(5.2) un+1 =
(
1 +

h

2
A1

)−1(
1− h

2
A2

)(
1 +

h

2
A2

)−1(
1− h

2
A1

)
un.

The Douglas-Rachford splitting uses a similar idea. For m = 2 we have

ũn − un
h

+A1(tn, un) +A2(tn+1, ũn) = 0,

un+1 − un
h

+A1(tn+1, un+1) +A2(tn+1, ũn) = 0,

u(tn) ≈ un.

The autonomous linear version is

(5.3) un+1 =
(
1 +

h

2
A1

)−1[
Id− hA2 (Id + hA2)

−1
(Id− hA1)

]
un.

Remark 27. The Douglas-Rachford splitting can be extended to the case m > 2[151].

The last additive scheme we write down explicitly is a development of the Peaceman-
Rachford splitting and is called the fractional θ−scheme: for θ ∈ (0; 1

2 )

ũn − un
θh

+A1(ũn, tn + θh) +A2(un, tn) = 0,
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≈
un − ũn
(1− 2θ)h

+A1(ũn, tn + θh) +A2(
≈
un, tn + (1− θ)h) = 0,

un+1 −
≈
un

θh
+A1(un+1, tn+1) +A2(

≈
un, tn + (1− θ)h) = 0,

u(tn) ≈ un.

These additive splitting scheme are expected to be first order accurate in general and
second order accurate if the operators are ”nice”.

Remark 28. If the operator A2 is computationally problematic (e.g. multivalued), both
Peaceman-Rachford and Douglas-Rachford splittings can be modified to exclude A2 from
the second subproblem. For instance, solving the first equation for A2(t̃n, ũn) we get for
the Peaceman-Rachford splitting

ũn − un
h
2

+A1(tn, un) +A2(t̃n, ũn) = 0,

un+1 − 2ũn + un
h
2

+A1(tn+1, un+1)−A1(tn, un) = 0.

There are other common additive operator splitting schemes such as the Tseng splitting
(e.g. [321, 11]) and the Davis-Yin splitting (e.g. [14, 74]).

In general, the additive operator splitting schemes considered above are known to be
convergent provided the operators involved are monotone (or some of them are).

Let us recall some very basic facts about this last assumption and optimization the-
ory [22, 355] and briefly explain some terminology that is often encountered in the context
of operator splitting methods in optimization. Let B be a Banach space. A possibly non-
linear and multivalued operator A : B 7→ B∗ is called monotone if

ℜ⟨y1 − y2, x1 − x2⟩ ≥ 0, yk ∈ A(xk), k = 1, 2.

Operator monotonicity is one of cornerstones of optimization theory in general and convex
optimization in particular. The Browder-Minty theorem states that if A is additionally
hemicontinuous and coercive22, that is, the mappings

[0; 1] ∋ s 7→ ⟨A(x+ sy), z⟩, x, y, z ∈ B,

are continuous and

inf
x

⟨A(x), x⟩
∥x∥2

> 0,

the equation Au = f has a solution. Moreover, the subdifferential ∂F of a proper closed
convex function F is necessarily a (maximally) monotone operator and

u ∈ argminF ↔ 0 ∈ ∂Fu,

so, roughly speaking, one can solve ∂Fu = 0 instead of the original optimization problem
(that is, one should find any function u in the zero set of ∂F ). Define a proximal operator

ProxFx = argmin
y

(
F (y) + ∥x− y∥2

)
.

The operator ProxF coincides with the resolvent (Id + ∂F )−1, and

0 ∈ ∂Fu ↔ u = ProxFu.

Additionally, ProxF = 1
2 Id + 1

2C where C is 1-Lipschitz. Operators that admit such
a decomposition are called firmly non-expansive, and fixed point (proximal) iterations
are guaranteed to converge for them. The same relations are present for variational
inequalities with convex functions.

22Recall that these are also standard assumptions in the theory of SPDEs.
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One finds numerous applications of operator splitting methods in the context of the
theory of monotone and proximal operators (in particular, in the context of fixed point
iterations). Such results are often formulated either in the terms of fixed points of
proximal operators or in the terms of resolvents and zero sets of monotone operators.
Technically, however, zero sets can be sampled by running the same fixed point iteration
algorithm, and methods based on Lagrange multipliers are commonly used for both
formulations.

Moreover, popular and effective alternating direction methods of (Lagrange) multipli-
ers (ADDM) are actually the reformulated Peaceman-Rachford and Douglas-Rachford
splittings (or other additive operator splitting schemes).

Example 22. ([22]) A so-called forward-backward splitting can be derived as follows: we
want to find x such that

0 ∈ (A1 +A2)x ↔ (Id−A1)x ∈ (Id +A2)x

↔ ∃y : y = (Id +A2)x, y = (Id−A1)x,

so x is such that
(Id +A2)

−1(Id−A1)x = x.

Note that alternatively we can show that x is a fixed point for (Id + αA2)
−1(Id− αA1)

for any α > 0. Then one may expect that for sufficiently small α fixed point iterations
converge not only for monotone A1, A2 but also if A1 is only cocoercive: an operator
A is α−cocoercive if αA is firmly non-expansive. Cocoercive operators often appear as
proper gradients.

Note that the corresponding IVPs for all splitting schemes are usually spatially dis-
cretized additionally in practice so we have high-dimensional systems of possibly non-
linear (differential) equations, and one selects methods to solve these systems separately
(from the outer splitting scheme). For instance, starting with a second order parabolic
PDE

∂u

∂t
= tr(AHessu)

and replacing only spacial derivatives with the corresponding difference quotients we
obtain a spatial high-dimensional ODE on some possibly non-uniform grid (or in a space
of basis functions if a finite element scheme is used)

(5.4)
duh(t)

dt
= Bhuh,

where the matrix B depends on the grid and the size h of the grid explicitly23. If both
space and time discretizations are used, we have a high-dimensional (possibly nonlinear)
equation.

Time and space discretizations are treated differently on the larger scale: additive
methods usually have a built-in discretization in time while multiplicative splitting
schemes, in contrast, do not usually dictate how the subproblems should be solved.
Choosing a concrete method leads to a variation of an initial scheme. For instance, by con-
sidering the non-autonomous Lie-Trotter splitting and choosing the 1-step backward Eu-
ler method we obtain theMarchuk-Yanenko splitting24: define vj,n, j = 1,m, n = 0, N − 1

vj,n − vj−1,n

h
+Aj(tn+1, vj,n) = 0, j = 1,m,

v0,n = vm,n−1,

vm,−1 = u0,

23If a boundary-value problem is considered, a free term appears in the RHS of the equation.
24This version is among the earliest numerical splitting schemes historically.
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u(tn+1) ≈ vm,n, n = 1, N.

In the autonomous case we have an alternative version of the Trotter-Kato theorem

(5.5) vm,n+1 = (1 + hAm)
−1 · · · (1 + hA1)

−1
vm,n.

Here the outer and inner optimization share the same time step. Alternatively, one can
use a Runge-Kutta type method with the step that is smaller than the time step of the
splitting scheme etc.

Multiplicative methods that feature a fixed one-step internal optimization step (such
as the Marchuk-Yanenko splitting) can be called alternatively locally one-dimensional
methods (LOD) in a generalized sense [189], while the Peaceman-Rachford and Douglas-
Rachford splittings are known as alternating direction implicit methods (ADI).

Multiplicative splitting methods are a subclass of exponential operator splitting meth-
ods (also called simply higher order splitting methods) – methods that can be formally
represented as linear combinations of formal semigroups25 of the form26

(5.6)
∑
k

ak
∏
i

[ ∏
j=1,m

ebk,i,jhAj

]
,

the numbers {ak}, {bk,i,j} not necessarily being non-negative or even real. Such meth-
ods are often used to construct higher order schemes. However, the term ”exponential
splitting” sometimes simply means the standard Lie-Trotter splitting.

Example 23. The autonomous Strang splitting27

(5.7) Rh = e
h
2 A2ehA1e

h
2 A2

is an exponential splitting scheme.

Example 24. For matrices, the scheme

1

2

(
ehA1ehA2 + ehA2ehA1

)
is second order accurate.

Example 25. ([189]) Using (5.7), one can define

RθhR(1−2θ)hRθh,

where θ > 0, 1− 2θ < 0, which is formally of the forth order and requires solving a PDE
backward in time.

Special constructive operator splitting schemes that build on simpler ones (usually
multiplicative) are often called hybrid, weighted, additive (in the alternative meaning)
and iterative and are briefly treated in the context of exponential splitting methods later
in the text.

Operator splitting methods encountered in the probabilistic setting are mostly multi-
plicative.

The above is a modern classification of operator splitting methods presented in [151].
However, multiplicative and additive methods historically have different origins and dif-
ferent societies of contributors; a specific operator splitting scheme or a particular ver-
sion of a general scheme (e.g. the Störmet-Verlet integration method) may have been
developed or rediscovered as a narrow ad hoc method for a particular problem, so the

25By saying ”formal”, we only mean that the actual theory of semigroups may not be even invoked

in a particular scenario, replaced e.g. with the theory of Lie groups.
26Here

∏
is used instead of ◦ to make the expression readable.

27We use (etA)t≥0 to denote the semigroup with a generator A in the context of exponential splitting

methods.
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nomenclature is rather diverse and does not necessarily possess integrity a researcher
interested in historical accuracy would desire28.

The following short interlude collects some alternative names.
We start with the Lie-Trotter splitting. A standard and historically justified alter-

native name is the fractional step method (or the method of fractional steps), which can
also include other similar schemes. Other possibilities revolve around (sur)names of
S. Lie, T.E. Trotter and T. Kato in different combinations, one of most common be-
ing the Lie splitting [151]. Analysts often speak about the Trotter-Kato formula only.
Probabilists may use ”splitting-up”. Physicists may speak about the Suzuki-Trotter ex-
pansion/decomposition. Sequential splitting is another alternative.

The Strang splitting can be called the Marchuk(-Strang) splitting.
The autonomous Peaceman-Rachford and Marchuk-Yanenko splittings can be written

in the terms of revolvents. Thus the sequential splitting of (5.1) and the resolvent splitting
of e.g. (5.2), (5.3) or (5.5) can be considered separately. Another example is the Ryu
splitting (e.g. [13, 249]).

Additive, sequential, weighted and iterative splitting schemesmay mean different things
for different authors and we refer to Section 10 for examples.

Particular versions and algorithms include the Störmet-Verlet and leapfrog methods
(see Section 10), time-evolving block decimation [333, 180], split Hamiltonian29 meth-
ods [70, 309], split-step Fourier [7, 328], mapping method [345, 248], gradient-projection [91,
130], split Bregman methods [153, 278], primal-dual splitting [44, 80], Rosenbrock’s ap-
proximate matrix factorization [41, 23], the aforementioned Tseng, Davis-Lin, Ryu split-
tings and others.

Remark 29. Intermediate values are approximations of the real solution for additive
splitting methods. It is not true for multiplicative schemes.

Remark 30. Additive splitting methods can be seen as a particular instance of implicit
explicit mixed methods (IMEX).

Remark 31. Note that the matrix Bh in (5.4) contains h−2 in the case of second deriva-
tives and thus introduces stiffness into the system even if it was not present originally.
In particular, implicit methods are advised for solving such ODEs.

6. A naive probabilistic example. An error of a splitting scheme and the
sources of it

This section consider a basic idea behind an actual implementation of a splitting
scheme for a parabolic PDE, and the usage of MC for it.

Since an additional layer of spacial discretization is almost always present, the total
error of an operator splitting scheme is composed of a theoretical error of the split-
ting procedure itself, the error of a space(-time) discretization procedure used to obtain
finite-dimensional formulations of subproblems, and the ordinary calculational error of
a chosen method and the corresponding program implementation used to solve these
finite-dimensional problems. These errors are not additive, obviously, though one can
try to obtain an additive bound. On occasion, stability of the final scheme may vary
greatly between different choices of internal sub-routines.

Discretization here may involve choosing a mesh, basis expansions, interpolation be-
tween points of a space(-time) grid, choosing a specific formula for the first/second/higher

28even though not to the degree of W. Rudin’s ironic remark [300]: ”Thus it appears that Čech

proved the Tychonoff theorem, whereas Tychonoff found the Čech compactification – a good illustration

of the historical reliability of mathematical nomenclature.”
29in particular, split Hamiltonian MC
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derivative at a boundary, variable grid steps, finite differences and finite volumes in gen-
eral, using volume and mass preservation formulations etc. Alternatively, if a probabilis-
tic interpretation is available, one may apply MC methods, and the upper bound of the
error becomes, roughly speaking,

Esplitting + EMC + Esim,

where EMC is a statistical discrepancy (due to an insufficient number of simulations),
estimated e.g. with using the Berry-Esseen, Bikelis or concentration inequalities [163],
and Esim is the error of the actual simulation procedure for the corresponding random
process.

Let us consider a basic and naive example to explain the situation. Consider an
ordinary PDE with a inhomogeneous term

∂u

∂t
=

1

2

∑
k,j=1,m

ak,j(x)
∂2u

∂xk∂xj
+

∑
k=1,m

bk(x)
∂u

∂xk
+ f(x, u)u,

u(x, 0) = u0(x), x ∈ Rm,(6.1)

and the Lie-Trotter splitting scheme that separates the ODE

(6.2)
dSt(x)

dt
= f(x, St(x)), S0(x) = x,

and the semigroup (Tt)t≥0 of the Markov process ξ with

dξxk(t) =
∑

j=1,m

σk,j(ξx(t))dwj(t) + bk(ξx(t))dt, k = 1,m,

ξx(0) = x,

where we assume that ∥aj,k∥j,k=1,m = σσ∗, the square root σ is Lipschitz continuous30,

bk, k = 1,m, are bounded, wj , j = 1,m, are independent Wiener processes, and the
function f ∈ C(R2m) satisfies suitable growth conditions. Both the process ξ and the
semigroup (St)t≥0 are well defined.

Suppose that the time step of the splitting scheme is h. Then the exact expression for
one step of two possible Lie-Trotter splittings are

(Th ◦ Sh)u0(x) = ESh(u0(ξx(h))),

(Sh ◦ Th)u0(x) = Sh (Eu0(ξx(h))) .(6.3)

Let {Sε
t (x) | x ∈ Rd, t ≥ 0}, ε > 0, be a family of numerical approximations of the

flow (St)t≥0 whose nature may be arbitrary and such that

Sε
t → St, ε→ 0,

in some sense. Let N be the number of MC simulations at each step of the splitting
scheme and let ξx,n,1, . . . , ξx,n,N be such simulations of ξx(h) at time step n. Then one
step of the splitting procedure that uses MC to solve (6.1) is

1

N

∑
k=1,N

Sε
h(u0(ξx,n,k))

Sε
h

( 1

N

∑
k=1,N

u0(ξ·,n,k)
)
(x),(6.4)

respectively. The error in these numerical schemes comes from a number of sources:

(1) the semigroup S̃ε does not recover the original flow unless the ODE (6.2) is solved
explicitly,

30A sufficient condition is the non-degeneracy and Lipschitz continuity of ∥aj,k∥j,k=1,m.
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(2) the number N of simulations is finite,
(3) the simulations themselves are not perfect: a random number generator produces

pseudorandom numbers actually, the value of ξx,n,k is simulated by using smaller
that h time steps and there is a limit how small they can get, higher order
simulation schemes require either calculating iterated stochastic integrals reliably
or providing families of random variables with the same moments up to a given
order etc.,

(4) the splitting itself.

However, MC can be unavailable for a specific PDE and even if it is applicable, this
method is rarely the first choice for PDEs in practice.

Note that one cannot really simulate a discretized u on the whole Rm straightfor-
wardly. For instance, standard finite difference schemes should be properly modified for
unbounded domains (e.g. by introducing artificial boundaries or by transforming the
original PDE into one on a bounded domain).

On the other hand, ”real-world” engineering PDEs are usually stated for bounded
domains automatically.

Remark 32. Though MC is significantly less sensitive to the problem of unbounded
domains, the presence of a boundary can cause problems. One can think about using
the classical Euler-Maruyama scheme to simulate a one-dimensional SDE whose solution
always stays positive: it is impossible to keep the approximations positive since they use
symmetrical random increments, so one has to consider corrected or suitable implicit
schemes etc. to remedy this31.

Consider now (6.1) in a bounded domain D ⊂ Rm with BC

u(x, t) = ub(x), x ∈ ∂D.

The boundary ∂D is assumed to be piecewise Lipschitz, as is customary.
We can apply the Feynman-Kac formula to get the analogs of (6.3). f is now defined

only on D × R, so one could try to consider a decomposition (cf. Section 9)

(6.5) ub = ũb + ûb,

and a family of degenerate first order PDEs32 to define S̃t ◦ g =: S̃g
t

∂S̃g
t (x)

∂t
= f(x, S̃g

t (x)),

S̃g
0 (x) = g(x), x ∈ D,

S̃g
t (x) = ũb(x), x ∈ ∂D,

instead of (6.2). Since the BC is a function of x only, an alternative is setting ûb = ũb =
ub.

Remark 33. However, references in Section 9 show that such naive approaches to BC are
not proper ones.

Then (6.3) transforms into(
Th ◦ S̃h

)
u0(x) = E S̃h ◦ u0(ξx(h))1 [τ > h] + E ûb (ξx(τ))1 [τ ≤ h] ,(

S̃h ◦ Th
)
u0(x) = S̃h ◦

(
Eu0(ξ·(h))1 [τ > h] + E ûb (ξ·(τ))1 [τ ≤ h]

)
(x),(6.6)

where τ is the time when ξx hits ∂D.

31See e.g. [8, 94] for results and references.
32For instance, one can add small noise to define this PDE properly.
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Remark 34. Even though we consider only the Dirichlet BC, it is clear that the decom-
position (6.5) cannot be arbitrary even if f can accommodate it. E.g. if σ = 0 on some
C ⊂ ∂D, this set C may be unreachable for ξ (so BC does not make sense here at all)
or the process ξ cannot be reflected there (so the Neumann BC cannot be imposed) etc.
Recalling that no classification of boundary points of a diffusion exists in dimensions
higher than or equal to 2, we can see this as a particular difficulty of the probabilistic
origin.

Assume also that we are given a family of possibly non-uniform grids (tessellations)
Gε, ε > 0, on D whose sizes converge to 0 as ε→ 0. We have the following ODE for the
finite-dimensional spatially discretized version of (Tt)t≥0

dvε(t, a)

dt
= Bε(vε(t, a))vε(t, a) + gε(vε(t, a)),

vε(0, a) = vε0(a),

t ∈ [0;h], a ∈ Gε,(6.7)

where the term gε appears due to boundary corrections when calculating derivatives and
explicitly depends on ûb, and vε,0 is a discretized version of the IC (which changes at
each step of the splitting scheme). Let vε,n denote finite-dimensional approximations of
(Tt)t≥0 on the grid Gε at time step n. One can use the standard θ−scheme33 with time
step h for solving ODEs to get

vε,n+1 = vε,n + θh [Bε(vε,n+1)vε,n+1 + gε(vε,n+1)] + (1− θ)h [Bε(vε,n)vε,n + gε(vε,n)] ,

which should be solved for vε,n+1. As it has been remarked already, the matrix Bε

depends on Gε and contains the second power of the grid size of Gε. Thus it needs
implicit and sufficiently stable methods whose step sizes get smaller as ε → 0 and thus
limit the choice of the grid in practice. This introduces an error the value of which
depends on Gε, the domain D, properties of ∂D etc. Such schemes are run at every step
of the splitting procedure.

However, let us choose for simplicity the forward Euler method with time step h so
we have instead just a linear matrix-valued equation

vε,n+1 − vε,n
h

= Bε(vε,n)vε,n + gε(vε,n),

vε,n+1 = T ε
h(vε,n),

T ε
h(x) =

(
Id + hBε(x)

)
x+ hgε(x), x on Gε.(6.8)

We also need {S̃ε
t (x) | x ∈ Rd, t ≥ 0}, ε > 0, which is a family of numerical approxi-

mations of the ”flow” (S̃t)t≥0 whose nature may again be arbitrary and such that

S̃ε
t → S̃t, ε→ 0,

in an appropriate sense. These approximations are also finite-dimensional and live on its

own grids so S̃ε
h(x) may not be defined for an arbitrary x ∈ D. But T ε

h(x) also makes

sense only if x ∈ Gε. Therefore to combine the operators S̃ε
h and T ε

h from (6.8) we need

to introduce interpolation procedures Iεh, J
ε
h, ε > 0, such that S̃ε

h ◦ Iεh ◦ T ε
h , T

ε
h ◦ Jε

h ◦ S̃ε
h

are well defined. The simplest example is a linear interpolation on a uniform grid.
Then we get instead of (6.6)

T ε
h ◦ Jε

h ◦ S̃ε
h,

S̃ε
h ◦ Iεh ◦ T ε

h .(6.9)

33This is the Crank-Nicolson scheme if θ = 1
2
.
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It is left to write down the corresponding versions of MC

1

N

∑
k=1,N

Jε ◦ S̃ε
h ◦ Iε ◦ uε0(ξ·,n,k)(x),

Jε ◦ S̃ε
h ◦ Iε

( 1

N

∑
k=1,N

uε0(ξ·,n,k)
)
(x),(6.10)

where uε0 is now defined on Gε only.
Thus we get additional sources of error:

(1) the decomposition of BC and the corresponding corrections (if any);
(2) solving the ODE part (and the corresponding PDEs);
(3) interpolation between points of a grid;
(4) space discretization, properties of the grids, the choice of difference quotients

etc.;
(5) internal time discretization (and associated internal errors).

We will continue the discussion of how BC affects splitting later.
In practice, the grid (that is, ε) is fixed and choosing a proper ε means choosing a

sufficiently numerically efficient spatial discretization. However, different subproblems (a
diffusion and an ODE in our case) may use different spatial discretizations on different
grids. For instance, assume that a dimension splitting is applied and the second order
operator is decomposed itself so each subproblem is a parabolic IVP in a subspace.

All these schemes – (6.3), (6.4), (6.6), (6.10), (6.9) – are different interpretations of the
same splitting procedure. Regardless of the path, the end result shows the discrepancy
between a theoretical analysis of our abstract splitting scheme and a practical implemen-
tation of it, and the same discrepancy is present between any abstract splitting method
and its implementation. For instance, if a Faedo-Galerkin scheme is used, (2) is replaced
with properties of the scheme, bases and spaces involved etc.

Remark 35. If an additive splitting scheme is used to solve an optimization problem, one
still calculates only a discretized approximation of the optimal function etc.

Actually, one can initially use approximate discretized semigroups to formulate a split-
ting scheme. This is how matrix-valued splitting schemes appear. [286] can be consulted
for such a formulation in the case of standard approximation schemes and corresponding
applications of the Trotter-Kato theorems and e.g. [202, 62, 61, 119, 221] can be consulted
for abstract results for splitting methods in this setting.

Again, a particular splitting scheme can be selected first in practice, and optimization
subroutines may follow naturally. Then different parts of the pipeline can be tuned
separately.

Remark 36. One important observation is that spatially discretized operators are often
just bounded linear operators, and finite-dimensional results about the convergence are
needed for them.

Remark 37. In the case of a general PDE and a general method (e.g. the finite element
method), an additional matrix may appear in (6.7) before the time derivative [189], so
even the ”explicit” forward Euler method of (6.8) would use matrix inversion, which
requires some additional effort.

Remark 38. A separation of linear and nonlinear parts for a Cauchy problem (e.g. for
advection-diffusion-reaction equations) is often a viable strategy (see e.g. [189, 306, 151,
98, 96] and references therein) in general due to technical and numerical considerations
and may even lead to theoretical results by directly exploiting properties of the flow
of the ODE that corresponds to the nonlinear part (e.g. [123] and Example 21). For
instance, this ODE may be solvable explicitly.
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Remark 39. An important and frequent task is to find a steady-state/equilibrium solution
with ∂u

∂t = 0. Such solutions often represent the long-term behavior of a physical system.
In general, operator splitting methods act on a fixed time interval, and it is advised to
use other methods to seek such solutions or to provide a modified version of a splitting
scheme [151, 64, 189].

7. Some remarks on the relation between ACPs and practice

We used ACPs to introduce the Trotter-Kato product formula (and thus the Lie-
Trotter splitting scheme) rigorously. They provide a well-established framework which
can be extremely useful in theoretical studies or applications. However, even multiplica-
tive operator splitting methods are not limited to this framework due to a number of
reasons, some of them being limitations of the semigroup approach. Even though a semi-
group representation is available for a huge number of PDEs including those involving
nonlinear and multivalued operators, it may be preferable to use the weak/variational
formulation to describe optimization problems, PDEs and especially partial differential
inequalities.

Indeed, the possibility to use finite difference and finite element methods (Faedo-
Galerkin schemes), gradient descent-based procedures, reformulations in the terms of dual
problems of convex programming, parallelization and so on often – but not necessarily –
pairs well with the variational approach.

These two intertwined frameworks compliment each other. For instance, a variational
reformulation of the Trotter-Kato theorem can be found in [202]. One can recall two dif-
ferent formulations of SPDEs as an example of the interplay between these two competing
frameworks [242, 141].

Remark 40. It is sometimes beneficial to introduce another types of solutions (e.g. vis-
cosity solutions, entropy solutions), the Navier-Stokes equation being an example where
even the discussion of well-posedness is nontrivial.

It also must be noted that it may be of crucial interest for a researcher to have a
decent and not necessarily optimal simulation procedure for a specific applied problem.
Moreover, it may happen also that only a limited set of (cost) effective, sufficiently fast
or (programmatically) implemented solvers is available, which dictates a concrete (and
possibly theoretically subpar and non-optimal) decomposition of an original problem.

In the end, even though the rate of convergence is often of utmost importance in
applications, it may nevertheless happen that the precise rate of convergence is unknown
or that even the conclusion about the convergence of an operator splitting scheme is
missing in a particular case entirely – and yet the sheer possibility to develop a sufficiently
reliable and practically implementable working simulation procedure can suffice to justify
the usage of this scheme. For instance, it may be sufficient to have only the convergence
result for the scheme itself.

To conclude, we have a difference between theoretical difficulties and engineering chal-
lenges34 and a gap between available rigorous theoretical results and practical needs.
However, applications is exactly the role operator splitting methods excel in besides the-
oretical studies. In fact, the development of additive operator splitting methods and
semi-discretized multiplicative ones was motivated and driven by practical studies.

34Such an extreme pathology as the Lebesgue thorn of the potential theory cannot appear in real
life; theoretical technical advances on irregular and regular boundary points (in the sense of Wiener) for
domains with corners are rarely of interest for pure engineers etc.
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8. The rate of convergence. Some remarks about error representations
in the deterministic case

It is nontrivial to find the accuracy of a splitting scheme. We have already discussed
the approach that combines the local error and the stability estimates. The reader can
consult Sections 4-5 for many references which typically use the theory of semigroups.
To obtain the rate of convergence, nontrivial additional assumptions should be added.

Some results on the speed of convergence (and occasionally on directly related topics
such as stability preservation) that have not been mentioned yet earlier and are at least to
some degree outside the analytic (semigroup-based) setting of the classical Kato-Trotter
formula are [114, 113, 124, 125, 193, 194, 312, 117, 118, 282, 179, 282, 227, 175, 326, 20,
193, 197, 196, 104, 105, 313, 140, 143, 185, 281, 214, 146, 229, 181, 322, 323, 324, 325,
322, 126, 36, 35, 58, 62, 61, 115, 216, 173, 85]. See also references later in this section.
References given in Section 1 ([151, 150, 149, 348, 301, 22, 251, 253, 252] and others)
can be used as a starting point for anyone interested in splitting methods in numerical
methods (especially in the field of fluid mechanics and other physical applications and/or
variational methods), and the corresponding literature is extremely rich.

Remark 41. In particular: [193, 194] study the difference between the Feynman-Kac
formula and the Shrödinger operator using probabilistic techniques including the theory
of Levý processes (see also references therein); [326, 20, 193, 197] obtain estimates on
the difference of the corresponding kernels, also via probabilistic techniques.

As illustrations, we include the following results about applications (and occasionally
about implementation) of splitting methods:35 [110, 306, 207, 43, 314, 288, 143, 142, 145,
212, 186, 147, 211, 69, 10, 9, 59, 157, 184, 254, 174, 239, 78, 240, 109, 241, 17, 356, 217,
221].

In general, the rate of the convergence can be arbitrary (or a bound may not be
available at all). E.g. [240] establishes only the well-posedness of a scheme and its energy-
preservation properties (cf. [273]).

Remark 42. [239, 109, 241, 17] provide a bound of the speed of the convergence that
combines sizes of time and space discretizations.

The following 3 examples illustrate the situation with the Trotter-Kato formula.

Example 26. ([353]) Let A1, A2, A = A1 +A2 be non-negative self-adjoint operators. If

D((A1 +A2)
α) ⊂ D(Aα

1 ) ∩D(Aα
2 )

for some α ∈ ( 12 ; 1), then ∥∥∥(e− 1
nA1e−

1
nA2

)n

− e−A
∥∥∥ ≤ C

n2α−1
.

This covers the example of two Laplacians on a bounded domain with a smooth boundary,
one with a Dirichlet BC and the other with a Neumann BC (α ∈ ( 12 ;

3
4 )).

Example 27. ([199, 198], cf. [351]) Let A1, A2 be non-negative self-adjoint operators such
that A = A1 +A2 is self-adjoint on D(A1) ∩D(A2). Then∥∥∥(e− 1

nA1e−
1
nA2

)n

− e−A
∥∥∥ ≤ C

n
.

This assumption on A is stronger than in the previous example.

35We do not include pure simulations. We try to give a wide range of applications or methods
and sometimes prefer recent publications since they can easy lead to older results in case a reader is
interested. A specific important equation may be understood as an ”application”.
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Example 28. ([175], see also [282, 124, 117, 118]) Consider an ACP on a Hilbert space

du

dt
= (A1 +A2)u,

where A1, A2 and A = A1 +A2 generate C0−semigroups. If

D(A2) ⊂ D(A1A2),

∥A1A2(Id−A)−2∥ <∞,

then the Lie-Trotter splitting is first order accurate. As an example, the coordinate-wise
decomposition of a possibly degenerate parabolic operator with a Dirichlet BC can be
considered.

Remark 43. A characteristic feature of Example 26, in addition to dealing with fractional
power of operators, is that both operators are comparable and thus the perturbation
theory that is sometimes encountered in the setting of splitting methods cannot be used.

Remark 44. There are some other classes of semigroups (e.g. holomorphic ones) that the
rate of the convergence in the Trotter-Kato formula is known for.

Remark 45. See also the survey [87].

Though most references above and from the previous sections are heavily analytic, it
is not obligatory to follow this route and a variety of methods only vaguely related to
the semigroup theory36 or totally different approaches are used.

The next example, besides its direct purpose, also introduces basics of the variational
formulation of IVPs.

Example 29. ([119], cf. [330]; also see [239, 109, 241, 17, 173, 221]) A shortened exposition
of a general variational framework for one semi-discrete multiplicative splitting scheme
with the backward Euler internal step is as follows. Assume that separable reflexive
Banach spaces Vj , j = 0,m, with ∩j=1,mVj = V0, are continuously and densely embedded
into a Hilbert space H so one can consider Gelfand triples

Vj ↪→ H ∼= H∗ ↪→ V ∗
j , j = 0,m.

The norms ∥∥V0
and

∑
j=1,m ∥∥Vj

are assumed to be equivalent. For fixed j, let Aj(t), t ∈
[0;T ], be hemicontinuous coercive monotone37 operators from Vj to V ∗

j such that∑
j=0,m

Aj = A0

on [0;T ], and for some p > 1

∥Aj(t)v∥V ∗
j
≤ C(1 + ∥v∥p−1

Vj
), v ∈ Vj , j = 0,m.

Set q = p
p−1 . Let fj ∈ Lq((0;T ), V ∗

j ), j = 0,m, be such that∑
j=1,m

fj = f0,

∥fj∥V ∗
j
≤ ∥f0∥V ∗

0
a.e.

Then, in particular, each equation

duj
dt

= Auj + fj

36which is itself a wide field
37see Section 5
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has the unique solution uj ∈ Lp((0;T ), Vj) with u′j ∈ Lq((0;T ), V ∗
j ). To introduce time

discretization, set for fixed n ∈ N

Aj,n,k = Aj

(
k

n

)
,

fj,n,k = n

∫ k+1
n

k
n

fj(s)ds, k = 0, n.

The splitting schemes is then defined as follows: for any n ∈ N

n (uj,n,k − vn,k−1) = m (Aj,n,kuj,n,k + fj,n,k) in V ∗
j ,

j = 1,m,

vn,k =
1

m

∑
j=1,m

uj,n,k,

vn,k ≈ u0

(k
n

)
, k = 0, n.

Piecewise constant and linear prolongations of {un,k} converge to u0 pointwise in H. If
the operators Aj(t) are strongly monotone, the convergence also is in Lp((0;T ), V0).

Remark 46. If the operators in Example 29 are discretized in space and thus finite-
dimensional, the Gelfand triples collapse to Euclidean spaces.

The general analysis of parabolic problems in domains with arbitrary BC is in devel-
opment and assumptions of general theorems should be checked in every particular case
and are not guaranteed to apply.

Now we present a short illustrative description of one very different method/tool of
studying errors of a splitting scheme which has not been represented in the previous
references (with a few exceptions).

Recall that ODEs with constant coefficients is covered by (2.3) and (2.4) where explicit
expressions for local errors in the terms of commutators are given. To extend the method
towards general ODEs (or a PDE) of the form

du

dt
= f1(t, u) + f2(t, u),

one can use the ordinary Taylor expansion. The result often includes iterated commuta-
tors and estimating such expressions is a vital part of the approach.

Example 30. ([189], cf. e.g. [31, 126, 312]) In the autonomous one-dimensional case this
idea gives for the Lie-Trotter splitting with time step h

(8.1)
h2

2
[f1, f2] +O(h3),

where [f2, f1] = f ′1f2 − f ′2f1.

Example 31. ([349]) Consider the Strang splitting S2(
h
2 )S1(h)S2(

h
2 ) for

dSk(t)

dt
= fk(Sk(t)), k = 1, 2.

The local error is

(8.2)
h3

12
[f2, [f1, f2]] +

h3

24
[f1, [f2, f1]] +O(h4).

Remark 47. The algebraic interpretation of (8.1) and (8.2) is discussed in Section 10.
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A related and often used simultaneously approach is to derive PDEs for global or
local errors. Such PDEs, being treated as IVPs or ODEs in functional spaces, usually
lead to expressions for the errors in the terms of the variation-of-constants formula and
again involve multiple iterated commutators of differential operators. Alternatively, an
error can be given as a difference of integral representations of the exact solution and
the approximation. This formally works for almost any operators but one still needs to
prove the validity of such formulae and obtain bounds for them.

Example 32. ([313]) The error of the Lie-Trotter splitting is

(8.3) et(A1+A2) − etA1etA2 =

∫ t

0

e(t−s)(A1+A2)
[
A2, e

sA1
]
esA2ds.

General examples are [101, 100, 110, 99, 95, 179, 218, 208, 216, 19, 16, 18, 72, 98, 102,
331].

9. Boundary conditions, inhomogeneous ACPs and the phenomenon of
order reduction

Now we return to the discussion of the decomposition of BC.
In general, BC often leads to the phenomenon of order reduction when the rate of the

convergence of a splitting scheme is observed to be lower that expected [189]: e.g. the
order of the Strang splitting is strictly lower than 2 (it may be only first order accurate
in practice [124]), while the Lie-Trotter splitting may happen to preserve the first order
in the same setting.

Recall that a (semi-)discretized version of a PDE in a domain can be considered as an
inhomogeneous ODE where BC is explicitly used to derive the RHS. Thus the following
example shows that a naive and straightforward approach leads to unavoidable additional
errors even in the simplest cases both in the context of inhomogeneous PDEs (ODEs)
and non-trivial BC (as well as the corresponding numerical schemes for such equations).

Example 33. ([189]) Assume that matrices A1, A2 ∈Mn commute and consider

du(t)

dt
= (A1 +A2)u(t) + g(t),

u(t) = et(A1+A2)u0 +

∫ t

0

e(t−s)(A1+A2)g(s)ds.

with g = g1 + g2. One step of the Lie-Trotter splitting with step size h is

un = eh(A1+A2)un−1 + ehA2

∫ h

0

e(h−s)A1g1(hn+ s)ds+

∫ h

0

e(h−s)A2g2(hn+ s)ds.

Thus the local error is obviously non-zero even for constant g1, g2. However, the method
becomes exact if we replace g1, g2 with

g̃1(hn+ s) = e−sA2g1(hn+ s),

g̃2(hn+ s) = e(h−s)A1g2(hn+ s),

s ∈ [0;h].(9.1)

On the other hand, the theoretical analysis of ACPs often incorporates BC into the
definitions of the corresponding domains, so they do not appear in the equation directly.
Otherwise a corrective additional inhomogeneous term appears.

Example 34. ([118]) Consider the Laplacian in a domain D with IC u0 and BC f. The
solution can be represented as v+w where w is the harmonic extension of f in D and v
is the solution of

∂v

∂t
= ∆v + g(v, w),
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v(0) = u0 − w0 in D,

v = 0 on ∂D,

with the correction g38. However, ∂v
∂t = g do not necessarily satisfy the original BC

and may thus be incompatible with the Laplacian (in the sense of domains), which is a
problem for the theoretical error analysis.

Remark 48. Note that this point of view can be somewhat different from most typical
approaches based on the weak formulation and Galerkin-Faedo approximations where BC
is often imposed onto ODEs for basis coefficients or is included via regularization. For a
quick summary of the relation between inhomogeneous PDEs, non-trivial BC, the weak
formulation of a PDE, Galerkin-Faedo appproximations and other common numerical
methods, see e.g. references in [287]. See also [244] for the semigroup approach.

Example 33 shows that one can try to eliminate this source of errors by correcting
boundary terms at each step of a splitting scheme. However, (9.1) contains e−sA2 , which
means backward integration in time (solving the initial IVP backward in an abstract
setting). This is not only a problem for implicit methods in general but even such
a standard operator as the Laplacian does not permit such integration. Obviously, the
same remarks apply to the decomposition of the inhomogeneous part of a PDE in general,
even without BC.

Example 35. The solution of a one-dimensional heat equation can be written as a series
that diverges for negative t. This is a standard simple example of a PDE that cannot be
solved backward in time. However, the heat semigroup is analytic and thus accepts some
complex numbers with positive real part.

Example 36. ([124]) Dimension splitting for an inhomogeneous two-dimensional parabolic
PDE39 in a domain is considered. For an inhomogeneous ACP and in the same notation
as in Example 33, the corrected Lie-Trotter splitting

un+1 = ehA1ehA2(un + hg(tn))

is first order accurate under suitable regularity assumptions on g. The order of accuracy
for the corrected Strang splitting

e
h
2 A1e

h
2 A2

(
e

h
2 A2e

h
2 A1un + hg(tn + h

2 )
)

is guaranteed to be less than 2 unless additional assumptions on the smoothness of g and
u(0) are imposed.

Some other references are [177, 117, 118, 282, 116, 281, 10, 9, 115, 174]. In particular,
[116] provides a comparison of some methods for the Strang splitting, and [10, 9] study BC
that directly involve the solutions. In particular, [282] develops general results on stability
of splitting schemes in the terms of smoothing properties of analytic semigroups involved
(that is, in the terms of fractional powers of the corresponding generators); domains
of various operators that appear in this context should also be suitably compatible40.
Typically, the BC and inhomogeneous part of the equation should be sufficiently smooth.
A problem of BC with time derivatives is considered in [85, 10, 9, 221].

Remark 49. A very naive – and obvious – explanation of some results here is as follows:
to obtain higher order stability results, one needs to expand a solution (given e.g. via
the variation-of-constants formula or via (8.3)) and estimate the remainder, which yields
assumptions on the regularity of the solution. This produces requirements for BC and

38See [124] for a discussion of the situation when w is problematic to find.
39in the divergence form, which is typical for such analytical results
40Cf. the discussion of the control for domains in the proof of the Trotter-Karo formula in Section 4.
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IC, and it is exactly where fractional powers of closed operators appear. See e.g. [282]
for a detailed example. Probabilists also use such techniques in the theory of SPDEs
and in the theory of subordinated Feller and sub-Markovian semigroups [55, 205, 206]41,
for example. In particular, see [55, 205] and other related references in Section 4 for
applications of the Trotter-Kato formula in the latter context.

Remark 50. Some detailed numerical splitting schemes can be found e.g. in [115].

10. General exponential splitting methods. The
Baker-Campbell-Hausdorff formula

This section discusses the general idea behind exponential splitting methods (re-
call (5.6)) and the Baker-Campbell-Hausdorff (BCH) formula42 in particular.

The underlying idea is to expand exponentials in (5.6) for small times and to choose
coefficients and times of integration in such a way that all lower order terms cancel.

Such task admits a full solution in the special case of ODEs that possess additional
geometric properties.

Example 37. Given A ∈ Mn the family {etA | t ∈ R} is a one-parameter subgroup of
GLn,

43 the general linear group (of invertible matrices) of degree n. In other words, the
solution of

du

dt
= Au

lives in the Lie group whose Lie algebra is Mn. So the local error of the Lie-Trotter
and Strang splittings can be written in the terms of Lie brackets ((2.3), (2.4)) and the
splitting is exact if the vector fields of the subsystems commute. Note that eA1 and eA2

both live in the same Lie group, which is a crucial moment: the flow of a vector field
A ∈ C∞ defines its own group of diffeomorphisms in the general case of non-constant
coefficients. Alternatively, we can say A1 and A2 belong to the same Lie algebra.

This algebraic interpretation goes beyond this finite-dimensional case and is the basis
for splitting methods as geometric integrators. References are [169, 33, 257, 189, 303, 304].

Geometric integration can be defined as developing integrators that preserve some
underlying geometric properties and structures such as symmetries, solutions living on a
special manifold, first integrals etc. An important example is symplectic methods that
preserve, in particular, phase volume44

We need some basic facts about Hamiltonian systems.

Example 38. (e.g. [172, 33, 304]) Let H be a smooth autonomous Hamiltonian and let
x = (p, q) be an element of the corresponding phase space R2m, where p are coordinates
and q are momenta. The Hamiltonian equations are

ẋ = J gradH(x),

J =

(
0 Id

−Id 0

)
.

The Lie algebra of Hamiltonian functions is the linear space of all smooth functions
endowed with the Poisson bracket as the Lie bracket. Any Hamiltonian function defines
a Hamiltonian vector field

Xf = J grad f.

41Subordination is a random time change by a subordinator.
42also known as the Baker-Campbell-Hausdorff-Dynkin formula
43We do not care which field – R or C – GLn is defined over.
44They also typically preserve important first integrals and ”almost” preserve energy in practice [303].
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Hamiltonian vector fields then form a Lie algebra with the Lie bracket

[Xf , Xg] = X{g,f}.

The flow Φf of a Hamiltonian vector field is the solution of

Φ̇f = Xf (Φf ).

The solution operator is the corresponding exponential mapping. We always have

(DΦf (x))
TJDΦf (x) = J,

where DΦf is the Jacobian of Φf .

Transformations having the last property are called symplectic. They form a Lie
group45. In particular, the phase volume is preserved under the composition of Hamil-
tonian flows and symplectic integrators provided they all share the same phase space,
since the composition of symplectic integrators is again symplectic.

Example 39. The one step of the Störmet-Verlet/leapfrog splitting is

p̃n+1 = pn +
h

2

∂H

∂q
(p̃n+1, qn),

qn+1 = qn − h

2

(
∂H

∂p
(p̃n+1, qn) +

∂H

∂p
(p̃n+1, qn+1)

)
,

pn+1 = p̃n +
h

2

∂H

∂q
(p̃n+1, qn+1).

The scheme is explicit for separable Hamiltonians.

We also need the following Baker-Campbell-Hausdorff formula [40, 33, 299, 304]46.
Given elements a1, a2 of a free Lie algebra the equation in the corresponding Lie group

(10.1) ea1ea2 = eb

has the solution b that admits a representation as the infinite series

b = a1 + a2 +
1

2
[a1, a2] +

1

12
([a1, [a1, a2]] + [a2, [a2, a1]]) + . . . ,

where all other terms can also be written as combinations of iterated Lie brackets. This
expression should be understood as as a formal power series in the corresponding algebra
of series [40, 33]. Such abstract interpretation is studied in [15] in the setting of operator
splitting methods.

Whether this representation makes sense in a particular setting is actually a non-
trivial question. In the case of a finite dimensional Lie algebra a1 and a2 should be
in a neighborhood of 0, and the series can diverge even for matrices [34]. Actually,
the equation (10.1) is only guaranteed to be always solvable in the algebra of formal
polynomials and may not admit the series representation in the terms of commutators
of the initial operators etc [30, 33, 34]47.

Now the idea is clear. Consider a particular case of (5.6)

(10.2)
∑
i

aie
bi,1hA1 · · · ebi,mhAm ,

where h is the size of the time step,
∑

j=1,mAi = A and A is the original operator of a
system. Then the BCH formula allows us to find the series Bi such that

ebi,1A1 · · · ebi,mAm = eBi ,

45In the general case, the Lie group of transformations that preserve a symplectic 2−form on the
symplectic manifold of a physical system.

46It is also used in the classical paper [223].
47Such pathologies are sometimes ignored in the literature.
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where

Bi = hBi,1 + h2Bi,2 + · · ·
and every Bi,k, k ≥ 1, is a linear combination of commutators. Expanding every product
of exponentials in powers of h in (10.2) gives

ehA −
∑
i

aie
bi,1hA1 · · · ebi,mhAm = hA+ h

∑
k

P1,kC1,k + h2
∑
k

P2,kC2,k + · · · ,

where Pi,k are polynomials in {ai} and {bi,k} and {C1,k} are iterated commutators of
A1, . . . , Am (C1,k is simply Ak). Then the scheme is first order accurate if

P1,k = −1, P2,k = 0,

and so on.
To obtain schemes of the third and higher order some time steps bi,k and coefficients

ai should be either negative or complex [169, 33]48. The first condition does not work in
the case of diffusion operators (Example 35), while complex time steps may be actually
usable here since the semigroup of a diffusion operator can be analytic (in a cone in C).

Example 40. ([189]) If Sh denotes one step of the Strang splitting, the scheme whose one
step equals

4

3
(Sh)

2 − 1

2
Sh

is (formally) fourth order accurate.

Example 25 also applies here.
The idea to use the BCH formula and the approach of formal power series in the case

of PDEs usually fails [33] as the corresponding smooth algebraic structure is not evident
or does not exist,49 and the applicability of the BCH formula is not clear. Numerical ap-
proximations are usually discretized, as we have already discussed, and thus do not share
geometrical properties of the real solution. The possible presence of BC and incompati-
ble domains which the operators of the system and subsystems are defined on are other
problems. Still, one can apply results formally or as the first steps of a rigorous proof
(which usually involves bounds for commutators), or simply use the method described
above to find new higher order exponential schemes.

The Lie formalism [169, 231, 189, 106]50 is typically used then. That is, given an ODE
or a IVP

du

dt
= F (u),

the solution admits a formal representation as a Lie-Gröbner series

u(t, x) = etLF Id(x) =
∑
k∈N

tk

k!
Lk
F Id(x),

where LF is the Lie-Gröbner operator that acts on a operator g as

LF g = g′F,

where g′ is the Frechet derivative. LF is the Lie derivative
∑

i Fi
∂

∂xi
if F is a vector field.

Now any exponential splitting schemes can be treated in the terms of such exponen-
tials. In particular, we obtain Examples 30 and 31 since the commutator [Lf1 , Lf2 ] is
calculated at Id, so we use (Lf1Lf2 − Lf2Lf1)Id.

48See also for a discussion of stability [189, 306, 71].
49This is related to the notion of hypoellipticity and the Hörmander condition. See also [29, 39].
50The Lie formalism can be used to handle the Taylor expansion (e.g. [98]).
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Example 41. ([189]) Consider

du

dt
= tr(AHessu) + f(u),

where f is a function. Separating diffusion and reaction via the Lie-Trotter splitting is
second order accurate if

tr(AHess f(u)) = f ′(u) tr(AHessu).

This is rarely the case in practice.

A general framework for unbounded generators of C0−semigroups is developed in [178].
Other references include [86, 125, 32, 349, 181, 322, 323, 324, 325, 322, 36, 35, 216, 71].
Sources of the physical nature in Section 8 are also often valid here.

Algebraic calculation around the BCH formula and error expansions of Section 8 can
be combined (e.g. [216]).

However, another approaches to constructing exponential splittings exist.

Example 42. [165] develops higher order schemes by combining simpler operator split-
ting methods on meshes with different sizes and with variable time steps51 for possibly
degenerate second order parabolic equations in Sobolev spaces.

Remark 51. The backward error analysis for exponential splitting methods is given
in [169]. This universal approach represents a numerical scheme as the flow of some
equation and uses a truncated version of this flow to study the global error.

Remark 52. So-called B-series can be used instead of the BCH formalism [169, 33, 15].

11. The Itô-Taylor expansion, the Kunita expansion and exponential
methods for SDEs

Starting from this point, we only briefly touch the nature of the results cited and
mostly concentrate on providing enough references an interested reader could benefit
from.

Roughly speaking, classical numerical methods for strong approximations of SDEs are
typically based on iterating the Itô formula and the corresponding Itô-Taylor (Wagner-
Platen) expansion (alternatively, the Stratonovich-Taylor expansion), and weak approx-
imations add parabolic equations, the Girsanov theorem and the Malliavin calculus into
the picture. However, the Malliavin calculus and the theory of Lie algebras are extensively
involved in the well-established stochastic algebraic theory behind the Stratonovich-
Taylor expansion and its truncated versions [223, 327, 260, 224, 225, 136] (also e.g. [250,
275, 347, 134, 280, 346, 200])52 in general and in obtaining cubature formulas for weak
approximations [245, 83, 84, 164, 182] in particular, which provides an appropriate coun-
terpart of the theory in the previous section.

We briefly recall the formal starting point. Consider smooth Rm−valued σ0, σk,
k = 1,m, with bounded derivatives and the corresponding Lie derivatives

Xk =
∑

i=1,m

σk,i
∂

∂xi
, i = 0,m.

Set w0(t) = t. Then the solution of

dξ(t) = σ0(ξ(t))dt+
∑

j=1,m

σj(ξ(t)) ◦ dwj(t),

51which does not pair well with the BCH formula, for instance
52The number of publications devoted to the algebraic interpretation of the Itô-Taylor expansion and

the corresponding advances in the Malliavin calculus is huge so all sources listed in this section should
merely be seen as starting points or semirandom examples.
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can be represented as

ξ(t) = eη(t),

η(t) =
∑

i=0,m

wi(t)Xi +
∑
α∈A

cαIαX
α,

where A is the set of special indexes, {cα} are numbers, {Iα} are iterated Stratonovich
integrals w.r.t. w0, . . . , wm and {Xα} are iterated commutators of X0, . . . , Xm. By a
classical result of H. Kunita, the series is convergent when the Lie algebra L generated
by X0, . . . , Xm is nilponent. On the other hand, this representation can formally be
understood as the exponential mapping on some non-commutative Lie algebra (say, the
algebra of smooth operators). In practice, higher order commutators are discarded and
a truncated version of η is considered.

Another approach uses truncated versions of the Stratonovich-Taylor expansion (roughly
speaking, this produces so called Kusuoka approximations, in particular53). Since it is
hard to calculate such iterated integrals efficiently, cubature formulas replace mathemat-
ical expectations of such integrals with iterated integrals w.r.t a family of functions of
bounded variation. To find cubature formulas explicitly, Lie algebras are typically used,
too.

So algebraic calculations are one important component needed to construct such weak
approximations. For instance, one can still construct exponential splitting schemes. How-
ever, the nature of calculations in general can be rather different unless one indeed
combines simpler schemes (such as the Ninomiya-Victoir scheme): though exponential
mappings that correspond to small time cubature formulae or approximate schemes ap-
pear, the series are typically truncated so algebraic calculations are often performed in
the terms of finite sums over some symbolic algebras (cf. [15] where such truncations are
also studied).

Lower order schemes may not even need the Malliavin calculus or symbolic calculations
if a test function is smooth and has bounded derivatives [275].

[260, 280, 327, 136, 261] directly discuss what can be seen as stochastic composition
and exponential splitting methods. [133] provides a different perspective in the spirit of
the rough path theory.

Example 43. ([327, 275]) The well known Ninomiya-Victoir scheme can actually be seen
as an exponential splitting scheme. Recall that for

dx(t) = a(x(t))dt+
∑

j=1,m

σj(x(t)) ◦ dwj(t)

(a version of) the Ninomiya-Victoir scheme is

εehae∆w1(h)σ1 · · · e∆wm(h)σm + (1− ε)ehae∆wm(h)σm · · · e∆w1(h)σ1

where ε is a Bernoulli random variable and the exponentials {etσk} denote flows of ODEs

du

dt
= σk(u), k = 1,m,

One can read this as expressions as a strong scheme or as a weak scheme (then ε = 1
2 ).

12. General results for SPDEs and SDEs

We start with recalling the setting of the filtration theory, as many advances in op-
erator splitting methods for SPDEs start here and it can be considered as a motivating
example.

53Cubature formulas and so called Kusuoka approximations are well known to be closed related
internally (cf. [224] and [245], for instance).
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Example 44. A standard version of the nonlinear filtration problem is as follows. Consider
the state x and the noisy measurement y given via

dx(t) = b(x(t))dt+ σ(x(t))dw(t),

dy(t) = h(x(t))dt+ dv(t),(12.1)

where v and w are independent Wiener processes. The unnormalized conditional density
ρ of x given y satisfies the Zakai equation

dρ(t) = L∗(t)ρ(t)dt+ ρ(t)h · dy(t),
where L∗ is the adjoint operator of the generator of x.

We are going to list three fundamental and general results for the Lie-Trotter splitting
for SPDEs.

Example 45. ([25]; see also [26] for a direct proof for the Zakai equation; cf. [330, 119])
Consider

dx(t) = A(t, x(t))dt+B(t, x(t))dW (t),

where W is a cylindrical Wiener process and A,B satisfy standard assumptions: hemi-
continuity, monotonicity, coercivity for the deterministic part, Lipschitz continuity for the
stochastic part, measurability and controlled growth for either etc. To define a splitting
scheme, two equations in some Hilbert space H

du(t) = A(t, u(t))dt,

dy(t) = B(t, y(t))dW (t)

are considered in the variational formulation (via the theory of Gelfand triples), and the
actions of their propagators are iterated so the deterministic (a PDE) and stochastic (a
Markov semigroup) parts of the original equation are combined exactly as in the Lie-
Trotter splitting. Define tk = k

n , k = 1, n, for some fixed natural n and let d∗(t) (d
∗(t))

be the smallest (largest) tk such that tk ≤ t (tk > t). Then consider54

un(t) = x(0) +

∫ t

0

A(s, un(s))ds+

∫ d∗(t)

0

B(s, yn(s))dW (s),

yn(t) = x(0) +

∫ d∗(t)

0

A(s, un(s))ds+

∫ t

0

B(s, yn(s))dW (s),(12.2)

which provides a compressed and convenient representation of the Lie-Trotter splitting on
the whole time interval. Then un, yn → x, n→ ∞, in L2((0;T )×Ω;H) and un(t), yn(t) →
x(t), n→ ∞, in square mean. See Example 52 for ordinary SDEs.

Example 46. [156] discusses a variety of SPDEs including those with non-classical as-
sumptions and applications of the two step Lie-Trotter splitting to such evolution equa-
tions. In contrast to Example 45, also schemes for which both steps contain stochastic
integrals (w.r.t. to orthogonal noises) are considered. Splitting schemes are used to de-
rive a constructive proof of the existence of the initial SPDE, in particular. Splitting is
also used to study invariant sets and to obtain comparison theorems (and then establish
conditions for positivity of solutions) (see also [220] for such results as corollaries of the
classical formulation of the Trotter-Kato formula). Applications include some types of
McKean-Vlasov equations.

Remark 53. Using splitting to prove existence theorems is a useful trick (see some refer-
ences in [156]; also [302, 103, 215, 266, 263] at least to some extend).

Both previous examples use the semigroup theory and variational methods for PDEs.

54Schemes that swap propagators or combine them on the second stage are also considered.
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Example 47. A different approach based primarily on probabilistic arguments is devel-
oped in [167, 166] where general second-order nonlinear SPDEs

du(t) = (A(t)u(t) + f(t))dv(t) + (L(t)u(t) + g(t))dW (t)

under the assumption of stochastic parabolicity are considered. Here W is a finite-
dimensional Wiener process, v is coordinate-wise increasing continuous adapted process,
f, g are weakly continuous functions with values in some Sobolev space and A,L are
second order and first order respectively differential operators with sufficiently smooth
coefficients. With stochastic integrals being properly separated from the rest of the
equation, convergence for the multistep Lie-Trotter splitting is established. Results about
the rate of the convergence for E supt ∥u(t) − un(t)∥H , where H is some Sobolev space,
are given, in particular.

All three examples use the notion of the weak solution.
Examples 45, 46 and 47 are very versatile and cover an extremely wide range of

applications, but they are not the only works on the topic. Other references that deal
with the theory of nonlinear filtration and, in some cases, provide bounds for the rate
of convergence include [131, 188, 232, 82, 357, 263, 103, 63, 237]. In particular, [204]
studies splitting for the Kushner equation.

Other results in an abstract setting without direct invocation of the filtration theory
include [283, 81, 215, 24, 120, 219]. [21] considers the Douglas-Rachford splitting in
the variational setting and thus gives a rather rare example of additive splitting in this
context.

Example 48. ([131, 232]) Consider the following modification of (12.1):

dx(t) = b(x(t))dt+ σ(x(t))dw(t) + α(x(t))dv(t),

dy(t) = h(x(t))dt+ dv(t).

under the same assumptions as earlier. Set a = σσ∗ and d = αα∗ and define operators

L0 =
1

2

∑
i,j

aij
∂2

∂xi∂xj
+
∑
i

bi
∂

∂xi
,

L1 =
1

2

∑
i,j

dij
∂2

∂xi∂xj
,

B = h+ α · grad .
Besides a splitting scheme of the initial SPDE defined via the composition of

∂u

∂t
= L∗

0u,

du = L∗
1udt+B∗udy,

one can consider splitting in the form of the composition of the associated SDEs as
follows. The first SDE is given via the generator L0, and the second one is related to

dξ(t) = α(ξ(t))(dy(t)− h(ξ(t))dt)

via the change of measure with a known density.

Remark 54. [131] also contains a discussion of the practical availability of such schemes,
which is a rather typical additional problem in practice.

Mild solutions of SPDEs and the Trotter-Kato formulae are studied in [159, 158, 161,
160] (see also references therein).

However, applied problem still provide plenty of examples that are not necessarily
covered by the previous universal approaches.
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Example 49. The stochastic Allen-Cahn equation is

du =
(1
2
∆u+ (u− u3)

)
dt+ dW,

where W is a cylindrical Wiener process or a Q−Wiener process. Here the nonlinear
part u−u3 only satisfies the one-sided Lipschitz condition and grows faster than linearly
at infinity55.

Remark 55. Another famous example of models that does not satisfy standard assump-
tions is the FitzHugh-Nagumo model (known in SDE and SPDE formulations). Moreover,
the second-order operator of this model is not parabolic.

Example 50. ([255]) Consider

dξ(t) = a(ξ(t)) + σ(ξ(t))w(t).

The split-step backward Euler method with step size 1
n is

ξ̃k+1 = ξk+1 + a(ξ̃k+1)
1

n
,

ξk+1 = ξ̃k+1 + σ(w
(
k+1
n

)
− w

(
k
n

)
),

ξk+1 ≈ ξ
(
k+1
n

)
.

In particular, this method can be used to preserve ergodic properties of the initial equa-
tion even for a ̸∈ Lip(Rm) (see also [51, 77, 45, 1, 90, 2, 259, 4] for results about structure-
preservation properties of splitting methods in the stochastic setting, including those
about invariant measures and symplectic properties and e.g. [174] for a deterministic
result outside the theory of symplectic integrators).

Example 51. ([48, 49, 50]) The following splitting scheme for the stochastic Allen-Cahn
equation on the interval [0;T ] is proposed:

ũn = ϕ(un),

un+1 = ST/nũn +

∫ (k+1)T/n

kT/n

S(k+1)T/n−sdW (s),

where (St) is the semigroup of the Laplacian in a proper function space and

dϕ(t)

dt
= ϕ(t)− ϕ(t)3.

Higher rates of convergence require more regularity of the noise.

The solution considered in the last example and related publications is often a mild
solution so the theory of semigroups is heavily involved.

Remark 56. The splitting scheme of Example 51 is the Euler-Maruyama scheme of some
auxiliary equation. Such an idea appears also in [358, 46, 222].

Some other works on the split-step backward Euler method and similar schemes for
SPDEs and SDEs are [51, 358, 46, 45, 112, 137, 222, 89, 88, 341, 340, 12, 6, 200, 226,
112, 233],56 and [137, 88, 343, 47] combine splitting with space discretization.

Some applications, including those to particle systems, Heston and Langevin models
and physics and finance in general, are [77, 75, 1, 90, 2, 144, 42, 259, 305, 243, 235, 236,
247, 73, 3, 213, 28, 97, 329, 111, 262, 132, 311, 201, 302]57.

55The one-sided Lipschitz condition is an example of a non-Lipshitz assumption for SDEs that usually
guarantees stability of numerical schemes and existence of moments of the solution.

56not necessarily with problematic coefficients and in a wide range of situations
57This occasionally includes exponential splitting such as the Ninomiya-Victoir scheme.
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Operator splitting methods are well known in the rough path theory. We refer to [187]
for a general survey and literature (also [151, Chapter 15], [135, 183], both for RDEs and
RPDEs). [133] uses a related approach.

Unfortunately, statistical applications of operator splitting methods seem to be mostly
undeveloped. See [294, 5] for some results and references.

13. A few examples: diffeomorphic flows of SDEs, Brownian web and
non-homeomorphic Harris flows

We end with some rather simple illustrations in the terms of flows of ordinary SDEs,
that is, semigroups (ϕs,t)s≤t of random transformations of Rm generated by

dϕs,t(x) = a(ϕs,t(x))dt+
∑
j=1,d

σj(ϕs,t(x))dwj(t),

where wj , j = 1, d are Rm−valued Wiener processes.
The Lie-Trotter splitting that separates drift and diffusion is given in (12.2).

Remark 57. The Itô formula cannot be applied to the processes constructed via this
scheme, in contrast to, say, the Euler-Maruyama scheme. A method to overcome this
difficulty is proposed in [167] where yn and un are combined to introduce an approximate
process that satisfies some SPDE. For that, given un, yn on the uniform partition of [0;T ]
define a process zn on [0; 2T ] via

zn(t) = un(τn(t)) + yn(κn(t)),

τn(t) =
( t
2
− k

n

)
1
[
t ∈

[2k
n
;
2k + 1

n

)]
+
k + 1

n
1
[
t ∈

[2k + 1

n
;
2k + 2

n

)]
,

κn(t) = τn

(
t− 1

n

)
.

Then
dzn(t) = a(zn(t))dτn(t) +

∑
j=1,d

σj(zn(t)) · dwj(τn(t)).

Example 52. If a, σj , j = 1,m, are Lipschitz continuous, the SPDE setting in [25] applies,
and the rate of convergence is known:

sup
x∈[−M,M ]

E sup
t∈[0,T ]

(ynt (x)− ϕ0,t(x))
2 ≤ Cδn,

sup
x∈[−M,M ]

sup
t∈[0,T ]

E (unt (x)− ϕ0,t(x))
2 ≤ Cδn,

Actually, similarities between the Euler-Maruyama scheme and the Lie-Trotter split-
ting allow one to transfer some proofs for the former scheme to the latter with minor
corrections.

Example 53. If we consider the one-dimensional case and Holder continuous coefficients,
the version of the Yamada-Watanabe method developed in [168] can be used to estimate
the rate of the convergence.

Example 54. 58 We can use the classical proof of the Talay-Tubaro expansion [163], the
only difference being that we need to use pathwise Taylor expansions instead of the
Itô formula. E.g. in the one dimensional case, this yields, for smooth f with bounded
derivatives,

E f(ξ(t))− E f(yn(t)) =
t

n
E

∫ t

0

ψ(s, ξ(s))ds+ o
( 1

n

)
58This observation seems to be new.
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where

ψ =
1

2

[
a2∂2xx + aa′∂x + a∂t∂x

]
u+

1

4
σ2∂2xx (a∂xu) .

The Lie-Trotter splitting can also applied to non-homeomorphic flows, in which case
the corresponding random transformations can be even piecewise constant functions.

Example 55. ([107, 108]) An extreme example is the Brownian web {Bs,t}, a system of
Wiener processes in R that start from all points of R at all times, move independently
until they meet and merge afterward. Here Bs,·(x) is a Wiener process started at x
at time s. Though the Brownian web does not admit a representation as a SDE, the
Lie-Trotter splitting can still be defined on the interval [ kn ;

k+1
n ) as

un(t) = St−k/n yn−1

(
k
n

)
,

yn(t) =
(
Bt,k/n ◦ S1/n

)
un

(
k+1
n

)
,(13.1)

where dSt

dt = a(St). Then the flows {yn} converge in distribution to the Brownian web
with drift a and so do the associated pushforward measures.

Example 56. ([335]) A Harris flow Xs,t is a flow of one-dimensional correlated Wiener
processes in which

d

dt
⟨Xs,·(x1), Xs,·(x2)⟩(t) = ϕ (Xs,t(x1)−Xs,t(x2)) ,

for some symmetric strictly positive definite ϕ ∈ C(R). Under proper assumptions
Xs,t, t > s, is a piecewise constant function. Moreover, though Xs,·(x) admits a rep-
resentation as a solution to some SDE, the process Xs,·(x) may not be the unique so-
lution [344]. Still, one defines the Lie-Trotter splitting as in (13.1) and the resulting
flows converge in distribution to the flow with the same ϕ and the corresponding drift59.
Pushforward measures and dual flows in the reversed time are also convergent.
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72. P. Chartier, F. Méhats, M. Thalhammer, and Y. Zhang, Improved error estimates for splitting

methods applied to highly-oscillatory nonlinear Schrödinger equations, Math. Comp. 85 (2016),

no. 302, 2863–2885. https://doi.org/10.1090/mcom/3088
73. J. Chen and V. Margarint, Convergence of ninomiya-victoir splitting scheme to schramm-

loewner evolutions, 2021.

https://arxiv.org/abs/2110.10631

74. L. Chen, X. Chang, and S. Liu, A three-operator splitting perspective of a three-block ADMM

for convex quadratic semidefinite programming and beyond, Asia-Pac. J. Oper. Res. 37 (2020),

no. 4, 2040009,30. https://doi.org/10.1142/S0217595920400096
75. X. Chen and G. dos Reis, A flexible split-step scheme for solving Mckean-Vlasov stochastic

differential equations, Applied Mathematics and Computation 427 (2022), 127180. https://

doi.org/https://doi.org/10.1016/j.amc.2022.127180

76. P. R. Chernoff, Product formulas, nonlinear semigroups, and addition of unbounded operators,

Memoirs of the American Mathematical Society, No. 140, American Mathematical Society,
Providence, R.I., 1974.

77. J. Chevallier, A. Melnykova, and I. Tubikanec, Diffusion approximation of multi-class Hawkes

processes: theoretical and numerical analysis, Adv. in Appl. Probab. 53 (2021), no. 3, 716–756.
https://doi.org/10.1017/apr.2020.73

78. H. J. Choi, W. Choi, and Y. Koh, Convergence analysis of the splitting method to the nonlinear

heat equation, Numer. Methods Partial Differential Equations 39 (2023), no. 4, 3417–3440.
79. J. E. Cohen, S. Friedland, T. Kato, and F. P. Kelly, Eigenvalue inequalities for products

of matrix exponentials, Linear Algebra Appl. 45 (1982), 55–95. https://doi.org/10.1016/

0024-3795(82)90211-7

80. L. Condat, D. Kitahara, A. Contreras, and A. Hirabayashi, Proximal splitting algorithms for

convex optimization: a tour of recent advances, with new twists, SIAM Rev. 65 (2023), no. 2,

375–435. https://doi.org/10.1137/20M1379344
81. S. Cox and J. van Neerven, Convergence rates of the splitting scheme for parabolic linear

stochastic Cauchy problems, SIAM J. Numer. Anal. 48 (2010), no. 2, 428–451. https://doi.
org/10.1137/090761835

82. D. Crisan, A. Lobbe, and S. Ortiz-Latorre, An application of the splitting-up method for the

computation of a neural network representation for the solution for the filtering equations,
Stoch. Partial Differ. Equ. Anal. Comput. 10 (2022), no. 3, 1050–1081. https://doi.org/10.

1007/s40072-022-00260-y

83. D. Crisan, K. Manolarakis, and C. Nee, Cubature methods and applications, Paris-Princeton
Lectures on Mathematical Finance 2013, Lecture Notes in Math., vol. 2081, Springer, Cham,

2013, pp. 203–316. https://doi.org/10.1007/978-3-319-00413-6_4

84. D. Crisan and S. Ortiz-Latorre, A Kusuoka–Lyons–Victoir particle filter, Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Science 469 (2013-08). https://doi.

org/10.1098/rspa.2013.0076

85. P. Csomós, M. Ehrhardt, and B. Farkas, Operator splitting for abstract Cauchy problems with
dynamical boundary conditions, Oper. Matrices 15 (2021), no. 3, 903–935. https://doi.org/
10.7153/oam-2021-15-60
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221. B. Kovács and C. Lubich, Numerical analysis of parabolic problems with dynamic boundary

conditions, IMA J. Numer. Anal. 37 (2017), no. 1, 1–39. https://doi.org/10.1093/imanum/

drw015
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