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A. V. IVANOV AND V. V. HLADUN

ON UNIFORM STRONG LLN FOR WEIGHTED LÉVY-DRIVEN
LINEAR PROCESS AND ITS APPLICATION TO STATISTICAL

INFERENCE

In the article the averaged integral of the Lévy-driven linear process weighted by the
complex exponential of a polynomial with real coefficients is considered. It is proved
that uniformly over all real coefficients values of this polynomial such an averaged
integral tends to zero a.s. It is also shown how the result obtained can be used to
prove the LSE strong consistency of the chirp signal parameters.

1. Introduction

First of all, we will define a linear Lévy-driven stochastic process (see, for example,
Ivanov, Leonenko, and Orlovskyi [8]). Let (Ω,F , P ) be a complete probability space.
A Lévy process L(t), t ≥ 0, is a stochastic process on (Ω,F , P ) with independent
and stationary increments, continuous in probability, with trajectories which are right-
continuous with left limits (càdlàg) and L(0) = 0. For a general theory of Lévy processes
we refer to Sato [12] and Applebaum [2].

Let (β, γ,Π) denote a characteristic triplet of the Lévy process L(t), t ∈ R+, that is
for all t ∈ R+

(1) lnE exp{izL(t)} = tκ(z),

(2) κ(z) = iβz − 1

2
γz2 +

∫
R

(
eizu − 1− izτ(u)

)
Π(du), z ∈ R,

where β ∈ R, γ ≥ 0, and

τ(u) =

{
u, |u| ≤ 1;
u
|u| , |u| > 1.

The Lévy measure Π in (1) is a Radon measure on R\{0} such that Π({0}) = 0, and∫
R

min(1, u2)Π(du) <∞.

The process L(t) has finite qth moment for q > 0 (E|L(t)|q <∞) if and only if

(3)
∫

|u|≥1

|u|qΠ(du) <∞,

and L(t) has finite pth exponential moment for p > 0 (E exp{pL(t)} <∞) if and only if

(4)
∫

|u|≥1

epuΠ(du) <∞,

see, for example, Sato [12], Theorem 25.3.
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If L(t), t ∈ R+, is a Lévy process with triplet (β, γ,Π), then the process −L(t), t ∈ R+,
is also a Lévy process with characteristics (−β, γ, Π̃) with Π̃ = Π(−A) for any Borel set
A. Then we modify it to be càglàd (Anh, Heyde, and Leonenko [1]) and introduce a
two-sided Lévy process L(t), t ∈ R, defined for t < 0 to be equal an independent copy of
−L(−t).

Let â : R → R be a measurable function. Consider the linear stochastic process

(5) ε(t) =

∫
R

â(t− s)dL(s), t ∈ R,

assuming â to be a real valued function, and besides

(6) â ∈ L1(R) ∩ L2(R) or â ∈ L2(R) with EL(1) = 0.

Under the conditions (6) and ∫
R

u2Π(du) <∞,

the stochastic integral in (5) is well-defined in the sense of stochastic integration intro-
duced by Rajput and Rosinski [10].

The popular choices for kernel â in (5) are Gamma type kernels:

(i) â(t) = tαe−λt1[0,∞)(t), λ > 0, α > − 1
2 ;

(ii) â(t) = e−λt1[0,∞)(t), λ > 0 (Ornstein-Uhlenbeck process);
(iii) â(t) = e−|λ|t, λ > 0 (well-balanced Ornstein-Uhlenbeck process).

In the text of the article it will be used the following condition.
A. EL(1) = 0; a = supt∈R |â(t)| < ∞; ||â|| =

∫
R |â(t)|dt < ∞, and the measure Π

satisfies (4) for some p > 0.
For arbitrary q ∈ N consider the family of polynomials

(7) Pq(t) = b1t+ b2t
2 + ...+ bqt

q, t ∈ R+,

with coefficients b(q) = (b1, ..., bq) ∈ Rq.

Theorem 1.1. If the condition A is met, then for any q ∈ N

(8) ξqT = sup
b(q)∈Rq

∣∣∣∣∣∣T−1

T∫
0

exp {−iPq(t)} ε(t)dt

∣∣∣∣∣∣→ 0 a.s., as T → ∞.

The proof of such an uniform strong LLN for q = 1 and various stochastic processes ε
has been obtained by many authors in connection with the problem of detecting hidden
periodicities (see, for example, Ivanov et al. [9]). For q = 2 and Gaussian strongly or
weakly dependent processes the uniform strong LLN is proved in Ivanov and Hladun [4]
and this result is used to prove LSE strong consistency and asymptotic normality of the
multiple chirp signal parameters (Ivanov and Hladun [4], [5]).

The proof of Theorem 1.1 is located in the Section 2. This theorem gives a positive
answer to prof. A. Yu. Pilipenko question asked in the seminar "Malliavin Calculus and
its Applications" during the authors report "Asymptotic properties of the LSE for chirp
signal parameters" on March 12, 2024 (see on YouTube) on the proof of uniform strong
LLN for polynomials Pq(t) of orders q > 2.

In Section 3, two theorems are formulated on LSE strong consistency for multiple
chirp signals parameters in the models with noise of the type (5), and their proofs are
based significantly on Theorem 1.1 similarly to Ivanov and Hladun [4], [6].
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2. Proof of Theorem 1.1

Introduce the notation

(9) εq(t) =
∏
Br

ε

∑
p∈Br

up + t

 ,

where product occurs over all subsets Br of the set {1, 2, ..., q}. Then

(10) Eεq(t)εq(s) = E
∏
Br

ε

∑
p∈Br

up + t

 ε

∑
p∈Br

up + s

 ,

and product in (10) contains 2q+1 factors.

Lemma 2.1. Let the condition A be satisfied. Then for any q ∈ N

Eξ2qT ≤
q−1∏
i=0

22
−i

×

T
−(q+2)

T∫
0

(u1)

T∫
0

(u2)

...

T∫
0

(uq)

T∫
0
(t)

T∫
0
(s)

|Eεq(t)εq(s)|dtdsduq...du2du1



2−q

.

(11)

Proof. Let’s carry out a detailed proof for q = 3. The proof for arbitrary q ∈ N is
absolutely similar, but is much more cumbersome, and we will pay attention only to the
key points of such a proof.

Consider the cubic polynomials P3(t) = b1t+b2t
2+b3t

3, t ∈ R+, b(3) = (b1, b2, b3) ∈ R3,
and write down

(12) ξ3T = sup
b(3)∈R3

∣∣∣∣∣∣T−1

T∫
0

exp {−iP3(t)} ε(t)dt

∣∣∣∣∣∣ .
Denote the expression under the supremum sign by η3T . Then

η23T = T−2

T∫
0

T∫
0

exp {−i(P3(t)− P3(s))} ε(t)ε(s)dtds

= T−2

∫∫
t>s

+T−2

∫∫
t<s

= I1 + I2.(13)

Making the change of variables t − s = u1, s = s′, and then denoting s′ again by the
letter s, we get obviously

t3 − s3 = u31 + 3u21s+ 3u1s, t2 − s2 = u21 + 2u1s, t− s = u1.

Then

(14) P3(t)− P3(s) = P3(u1) + 3b3u1s
2 + (3b3u

2
1 + 2b2u1)s,
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and

|I1| = T−2

∣∣∣∣∣∣
T∫

0

exp {−iP3(u1)}

 T−u1∫
0

exp
{
−i(3b3u1s2 + (3b3u

2
1 + 2b2u1)s)

}

× ε(s+ u1)ε(s)ds

 du1

∣∣∣∣∣∣
≤ T−2

T∫
0

∣∣∣∣∣∣
T−u1∫
0

exp
{
−i(3b3u1s2 + (3b3u

2
1 + 2b2u1)s)

}
ε(s+ u1)ε(s)ds

∣∣∣∣∣∣ du1.(15)

Renaming variables t to s, and s to t in the integral I2 we obtain similarly

|I2| = T−2

∣∣∣∣∣∣
T∫

0

exp {iP3(u1)}

 T−u1∫
0

exp
{
i(3b3u1s

2 + (3b3u
2
1 + 2b2u1)s)

}

× ε(s+ u1)ε(s)ds

 du1

∣∣∣∣∣∣
≤ T−2

T∫
0

∣∣∣∣∣∣
T−u1∫
0

exp
{
i(3b3u1s

2 + (3b3u
2
1 + 2b2u1)s)

}
ε(s+ u1)ε(s)ds

∣∣∣∣∣∣ du1.(16)

Let’s take ε(s+ u1)ε(s) = ε1(s). Then from (15) and (16) it follows

Eξ23T ≤ 2T−2

T∫
0

E sup
(b2,b3)∈R2

∣∣∣∣∣∣
T−u1∫
0

exp
{
−i(3b3u1s2 + (3b3u

2
1 + 2b2u1)s)

}
ε1(s)ds

∣∣∣∣∣∣ du1
≤ 2T−2

T∫
0

E sup
(b2,b3)∈R2

T−u1∫
0

T−u1∫
0

exp
{
−i(3b3u1(t2 − s2) + (3b3u

2
1 + 2b2u1)(t− s))

}

× ε1(t)ε1(s)dtds


1
2

du1.

(17)

Rewrite double inner integral in (17) again as

(18)
T−u1∫
0

T−u1∫
0

=

∫∫
t>s

+

∫∫
t<s

= I21 + I22.

Making the change of variables t− s = u2, s = s′ → s in the integral I21, we obtain

3b3u1(t
2 − s2) + (3b3u

2
1 + 2b2u1)(t− s) = 3b3u1(u

2
2 + 2u2s) + (3b3u

2
1 + 2b2u1)u2,

that is

|I21| =

∣∣∣∣∣∣
T−u1∫
0

exp
{
−i(3b3u1u22 + 3b3u

2
1u2 + 2b2u1u2)

}

×
T−u1−u2∫

0

exp {−i(6b3u1u2s)} ε1(s+ u2)ε1(s)dsdu2

∣∣∣∣∣∣
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(19) ≤
T−u1∫
0

∣∣∣∣∣∣
T−u1−u2∫

0

exp {−i(6b3u1u2s)} ε1(s+ u2)ε1(s)ds

∣∣∣∣∣∣ du2.
Similarly,

(20) |I22| ≤
T−u1∫
0

∣∣∣∣∣∣
T−u1−u2∫

0

exp {i(6b3u1u2s)} ε1(s+ u2)ε1(s)ds

∣∣∣∣∣∣ du2.
Using notation ε2(s) = ε1(s+ u2)ε1(s), from (17)-(20) we arrive at the inequality

E sup
(b2,b3)∈R2

T−u1∫
0

T−u1∫
0

exp
{
−i(3b3u1(t2 − s2) + (3b3u

2
1 + 2b2u1)(t− s))

}
ε1(t)ε1(s)dtds

≤ 2

T−u1∫
0

E sup
b3∈R

T−u1−u2∫
0

T−u1−u2∫
0

exp {−i(6b3u1u2(t− s))} ε2(t)ε2(s)dtds


1
2

du2.

(21)

As before, we will make a change of variables t − s = u3, s = s′ → s in the double
integral under the square root sign in the right hand side of (21):

(22)
T−u1−u2∫

0

T−u1−u2∫
0

exp {−i(6b3u1u2(t− s))} ε2(t)ε2(s)dtds =
∫∫
t>s

+

∫∫
t<s

= I31 + I32.

We put ε3(s) = ε2(s+ u3)ε2(s) and get the following majorant:

E sup
b3∈R

|I31| = E sup
b3∈R

∣∣∣∣∣∣
T−u1−u2∫

0

exp {−i(6b3u1u2u3)}
T−u1−u2−u3∫

0

ε3(s)dsdu3

∣∣∣∣∣∣
≤

T−u1−u2∫
0

E

∣∣∣∣∣∣
T−u1−u2−u3∫

0

ε3(s)ds

∣∣∣∣∣∣ du3
≤

T−u1−u2∫
0

 T−u1−u2−u3∫
0

T−u1−u2−u3∫
0

Eε3(t)ε3(s)dtds


1
2

du3.(23)

For E sup
b3∈R

|I32| we get the same upper bound.

Collecting formulas (12)-(23) we derive the following inequality

Eξ23T ≤ 2T−2

T∫
0

2

T−u1∫
0

2

T−u1−u2∫
0

 T−u1−u2−u3∫
0

T−u1−u2−u3∫
0

Eε3(t)ε3(s)dtds


1
2

× du3


1
2

du2


1
2

du1.

(24)
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Taking into account the notation ε3(t), ε2(t) and ε1(t) we get (see also (9))

ε3(t) = ε2(t+ u3)ε2(t) = ε1(t+ u3 + u2)ε1(t+ u3)ε1(t+ u2)ε1(t)

= ε(u1 + u2 + u3 + t)ε(u1 + u2 + t)ε(u1 + u3 + t)ε(u2 + u3 + t)

× ε(u1 + t)ε(u2 + t)ε(u3 + t)ε(t).

Thus in (24) the expectation

Eε3(t)ε3(s) = Eε(u1 + u2 + u3 + t)ε(u1 + u2 + t)ε(u1 + u3 + t)ε(u2 + u3 + t)

× ε(u1 + t)ε(u2 + t)ε(u3 + t)ε(t)ε(u1 + u2 + u3 + s)ε(u1 + u2 + s)ε(u1 + u3 + s)

× ε(u2 + u3 + s)ε(u1 + s)ε(u2 + s)ε(u3 + s)ε(s)(25)

is the 16th mixed moment of the process ε values.
From (24) a rougher inequality follows:

(26)

Eξ23T ≤ 2
7
4T−1

T∫
0

T−1

T∫
0

T−1

T∫
0

T−2

T∫
0

T∫
0

|Eε3(t)ε3(s)|dtds


1
2

du3


1
2

du2


1
2

du1.

Making in (26) changes os variables t→ Tt, s→ Ts, ui → Tui, i = 1, 2, 3, we obtain

(27) Eξ23T ≤ 2
7
4

1∫
0


1∫

0

 1∫
0

 1∫
0

1∫
0

|Eε3(Tt)ε3(Ts)|dtds


1
2

du3


1
2

du2


1
2

du1.

Let’s apply to (27) Hölder’s inequality

1∫
0

|f(x)|dx ≤

 1∫
0

|f(x)|pdx


1
p

3 times, first with respect to u3 and p = 2, next with respect to u2 and p = 4, and finally
with respect to u1 and p = 8. In the end it turns out

(28) Eξ23T ≤ 2
7
4

 1∫
0

1∫
0

1∫
0

1∫
0

1∫
0

|Eε3(Tt)ε3(Ts)|dtdsdu3du2du1


1
8

.

Next we will sequentially make reverse changes of variables Tt → t, Ts → s, Tui → ui,
i = 1, 2, 3, and receive the inequality

(29) Eξ23T ≤ 2
7
4

T−5

T∫
0

T∫
0

T∫
0

T∫
0

T∫
0

|Eε3(t)ε3(s)|dtdsdu3du2du1


1
8

.

The question arises how to obtain an inequality (11) similar to (29) for an arbitrary
q ∈ N. The expression similar to the 1st row in (13) is

(30) η2qT = T−2

T∫
0

T∫
0

exp {−i(Pq(t)− Pq(s))} ε(t)ε(s)dtds.

First of all we have to represent properly the differences tq−sq,...,t4−s4, to separate terms
containing just powers of t−s = u and terms containing both variables u and s. It will be
a generalization of the relation (14). Note that tq−sq = u

(
(u+ s)q−1 + (u+ s)q−2s+ ...

+(u+ s)sq−2 + sq−1
)
, and so on. This will lead to inequality similar to (17), where the
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coefficient b1 is absent. Then we must take another q − 1 steps to successively get rid
of the coefficients b2,...,bq. In final analysis we will derive the inequalities similar to
(26)-(29), and inequality (29) for general q to be of the form (11). □

The next step in the proof of Theorem 1.1 is to estimate the right hand side of the
inequality (11).

From the condition A it follows (Anh, Heyde, and Leonenko [1]) for any r ∈ N (see
(1), (2))

(31) lnE exp

i
r∑
j=1

zjε(tj)

 =

∫
R

κ

 r∑
j=1

zj â(tj − x)

 dx.

In particular, from (31) it can be seen that ε is strictly stationary process. Denote by

mr(t1, ..., tr) = Eε(t1)...ε(tn),

cr(t1, ..., tr) = i−r
∂r

∂z1...∂zr
lnE exp

i
r∑
j=1

zjε(tj)


∣∣∣∣∣∣
z1=...=zr=0

(32)

the moment and cumulant functions correspondingly of order r of the process ε.
The explicit expression for cumulants of the stochastic process ε can be obtained from

(31) by direct calculations:

(33) cr(t1, ..., tr) = dr

∫
R

r∏
j=1

â(tj − x)dx,

where dr is the rth cumulant of the random variable L(1). From equation (1), taking
t = 1, one can find under condition A: d1 = 0, d2 = EL2(1) = −κ′′(0), d3 = EL3(1),
d4 = EL4(1)− 3(EL2(1))2, and so on. Note also that m2(t1, t2) = c2(t1, t2) = B(t1 − t2),
where

(34) B(t) = d2

∫
R

â(t+ x)â(x)dx, t ∈ R.

Let I = {1, 2, ..., Q}, Ip = {i1, ..., ilp} ⊂ I, c(Ip) = clp

(
ti1 , ..., tilp

)
,

m(I) = mQ(t1, ..., tQ). Then the following Leonov-Shiryaev formula is valid (see, for
example, Ivanov and Leonenko [7])

(35) m(I) =
∑
Ar

r∏
p=1

c(Ip),

where
∑
Ar

denotes summation over all unordered partitions Ar =

{
r⋃
p=1

Ip

}
of the set I

into the sets I1,...,Ir such that I =
r⋃
p=1

Ip, Ii ∩ Ij = ∅, i ̸= j.

Lemma 2.2. The fulfillment of condition A entails for any q ∈ N the relation

(36) Eξ2qT = O(T−2−q

), as T → ∞.

Proof. As before, we will consider in detail the proof for q = 3 and apply the formula
(35) for Q = 2q+1 = 16 to integrand expression (25) in (29), namely: the 16th mixed
moment of the process ε values can be represented as a sum of products of the process
ε cumulants, which, in turn, can be divided into 55 sets in accordance with the orders
of cumulants in these products (see Appendix 1). Each product of cumulants in each of
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these 55 sets, using condition A, can be estimated in a special way. Bellow we give an
example how this should be done.

Example 2.1. Consider the product c6()c4()c3()c3() and use the formula (33). Then
we can estimate the 6th cumulant as |c6()| ≤ |d6|a5||â||. Similarly |c4()| ≤ |d4|a3||â||, for
the 1st cumulant of the 3rd order |c3()| ≤ |d3|a2||â||. The second cumulant of the 3rd
order (the last cumulant of the given product) can be bounded as

(37) |c3()| ≤ |d3|
∫
R

|â(...− x)â(...− x)â(...− x)|dx ≤ |d3|a
∫
R

|â(...− x)||â(...− x)|dx,

where 3 dots mean some sums of variables from formula (25). In the 1st and 2nd factors
under the integral sign in the right hand side of (37) the variable sets V1 and V2 from the
set V = {t, s, u1, u2, u3} do not coincide. If V1 ⊂ V2, then we just rearrange the factors.
In any case in the old or new the 1st factors we can specify a variable that is missing
in the 2nd factor. Suppose, for example, the 1st and the 2nd factors are of the form
â(...+ t− x) and â(...+ s− x) correspondently. Then by Fubini theorem

(38)
T∫

0

∫
R

|â(...+ t− x)||â(...+ s− x)|dx

 dt ≤ ||â||
∫
R

|â(...+ s− x)|dx ≤ ||â||2,

and therefore the fivefold integral in (29) corresponding to the given product of cumulants
can be bounded by the value |d6d4|d23a11||â||5T 4 (see the 35th row in Appendix 1).

Let d = max
i

|di|, i = {2, 3, ..., 2q+1 − 2, 2q+1}, for arbitrary q ∈ N. If q = 3, then

d = max
i

|di|, i = {2, 3, ..., 14, 16}. Let’s majorize in each row of the Appendix 1 table

each value |di| by d. After this one can notice that all the estimates on the right side of
the Appendix 1 table split into 23 = 8 types:

(39) dj−1a16−j ||â||jT 4, j = 2, 9.

The terms (39) are present in the estimate of integral in formula (29) with some integer
coefficients, and their calculation for q = 3 is not included in our plans. Instead, we are
going to write a rougher but manageable bound by counting the total number of terms
in formula (35) provided d1 = 0. Generally speaking, the sum (35) contains BQ terms,
where BQ is the Bell number, i.e. the number of all possible unordered partitions of an
Q-element set (see, for example, Rota [11]).

Let Bm, m ≥ 1, be the Bell numbers, Sm be the numbers of unordered partitions of
the set {1, 2, ...,m} into subsets that do not contain singletons. Put by definition S0 = 1.
Then

(40) Bm =

m∑
j=0

CjmSm−j , Sm = Bm −
m∑
j=1

CjmSm−j .

Using recurrence relation (40) we write the first Q = 16 numbers Sm in Appendix 2 to
serve the case q = 3.

Thus, taking into account the above reasoning, we can write the following bound:

Eξ23T ≤ 2
7
4

S16

9∑
j=2

(
dj−1a16−j ||â||j

) 1
8

T− 1
8 ,

S16 = 1 216 070 380, 8
√
S16 ≈ 13.665 (see Appendix 2).(41)
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Passing to an arbitrary q ∈ N and subjecting formulas (10), (11) to similar processing,
we obtain the general rough but observable inequality proving Lemma 2.2:

(42) Eξ2qT ≤
q−1∏
i=0

22
−i

S2q+1

2q+1∑
j=2

(
dj−1a2

q+1−j ||â||j
)2−q

T−2−q

.

□

In particular, the last inequality is correct for q = 2 as well, namely:

(43) Eξ22T ≤ 2
3
2

S8

5∑
j=2

(
dj−1a8−j ||â||j

) 1
4

T− 1
4 , S8 = 715.

However in the next section of the paper we will offer a more accurate estimate for q = 2.
The last part of Theorem 1.1 proof is standard (see, for example, Ivanov and Hladun

[4]). Returning to inequality (42) we take Tn = nα with number α > 2q. Then
∞∑
n=1

Eξ2qTn
< ∞, and ξqTn

→ 0 a.s., as n → ∞. Consider the sequence of random

variables

ζn = sup
Tn≤T<Tn+1

|ξqT − ξqTn
|

= sup
Tn≤T<Tn+1

∣∣∣∣∣∣ sup
b(q)∈Rq

∣∣∣∣∣∣T−1

T∫
0

exp{−iPq(t)}ε(t)dt

∣∣∣∣∣∣− sup
b(q)∈Rq

∣∣∣∣∣∣T−1
n

Tn∫
0

exp{−iPq(t)}ε(t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ sup
Tn≤T<Tn+1

sup
b(q)∈Rq

∣∣∣∣∣∣T−1

T∫
0

exp{−iPq(t)}ε(t)dt− T−1
n

Tn∫
0

exp{−iPq(t)}ε(t)dt

∣∣∣∣∣∣
≤ sup
Tn≤T<Tn+1

[
sup

b(q)∈Rq

∣∣∣∣∣∣(T−1 − T−1
n )

Tn∫
0

exp{−iPq(t)}ε(t)dt

∣∣∣∣∣∣
+ sup
b(q)∈Rq

∣∣∣∣∣∣T−1

T∫
Tn

exp{−iPq(t)}ε(t)dt

∣∣∣∣∣∣
]

≤ Tn+1 − Tn
Tn

ξqTn
+ T−1

n

Tn+1∫
Tn

|ε(t)|dt = ζn1 + ζn2.

Obviously, ζn1 → 0 a.s., as n→ ∞. On the other hand,

Eζ2n2 = T−2
n

Tn+1∫
Tn

Tn+1∫
Tn

E|ε(t)ε(s)|dtds ≤ B(0)

(
Tn+1 − Tn

Tn

)2

= O(n−2),

since according to condition A and formula (34) B(0) ≤ d2a||â||. Thus,
∞∑
n=1

Eζ2n2 ≤ ∞,

and ζn2 → 0 a.s., as n→ ∞.

3. Some statistical applications for q = 2

First of all, we will clarify inequality (43). Application of formula (35) to (10) and
(11) for q = 2 gives us the following sum of cumulants:

1) c8() – 1 term; 2) c6()c2() – 28 terms; 3) c5()c3() – 56 terms;
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4) c4()c4() – 35 terms; 5) c4()c2()c2() – 210 terms; 6) c3()c3()c2() – 280 terms;
7) c2()c2()c2()c2() – 105 terms.

Using the notation introduced above, we get

(44) Eξ22T ≤ H1T
− 1

4 ,

H1 = 2
3
2

(
|d8|a6||â||2 + 28|d6|d2a5||â||3 + 56|d5d3|a5||â||3 + 35d24a

5||â||3

+ 210|d4|d22a4||â||4 + 280d23d2a
4||â||4 + 105d42a

3||â||5
) 1

4

≤ 2
3
2

(
da6||â||2 + 119d2a5||â||3 + 490d3a4||â||4 + 105d4a3||â||5

) 1
4 = H2.

So,

(45) Eξ22T ≤ H2T
− 1

4 ,

and moreover 1 + 119 + 490 + 105 = 715 = S8, that is H2 is less than correspondent
constant in (43). Unfortunately for q ≥ 3 such an improvement of the constant in
inequality (42) is too complicated if we use this method of Theorem 1.1 proof.

Next we are going to show how Theorem 1.1 can be used to prove the strong consistency
of LSE of multiple chirp signal parameters (see Ivanov and Hladun [4], [5], [6]).

Suppose we observe a stochastic process

(46) X(t) = g(t, θ0) + ε(t), t ∈ R+,

where

(47) g(t, θ0) =

N∑
j=1

(
A0
j cos

(
ϕ0j t+ ψ0

j t
2
)
+B0

j sin
(
ϕ0j t+ ψ0

j t
2
))
,

(48) θ0 =
(
A0

1, B
0
1 , ϕ

0
1, ψ

0
1 , ..., A

0
N , B

0
N , ϕ

0
N , ψ

0
N

)
,(

A0
j

)2
+
(
B0
j

)2
> 0, j = 1, N ; ε = {ε(t), t ∈ R} is a Lévy-driven linear process described in

the Section 1 of the paper. Assuming that the true values of amplitudes A0
j , B0

j , j = 1, N ,
are different numbers and the true values of frequencies ϕ0j , j = 1, N , and chirp rates ψ0

j ,
j = 1, N , are different positive numbers, we arrange the chirp rates ψ0 =

(
ψ0
1 , ..., ψ

0
N

)
in

increasing order and suppose

ψ0 ∈ Ψ(ψ,ψ) =
{
ψ = (ψ1, ..., ψN ) ∈ RN : 0 ≤ ψ < ψ1 < ... < ψN < ψ < +∞

}
.

In turn, we introduce also the parametric set

Φ(ϕ, ϕ) =
{
ϕ = (ϕ1, ..., ϕN ) : 0 ≤ ϕ < ϕj < ϕ < +∞, j = 1, N

}
,

and ϕ0 =
(
ϕ01, ..., ϕ

0
N

)
∈ Φ(ϕ, ϕ).

Consider monotonically non-decreasing family of open sets ΨT ⊂ Ψ
(
ψ,ψ

)
, T > T0 >

0, containing vector ψ0, such that
⋃

T>T0

ΨT = Ψ̃, Ψ̃c = Ψc
(
ψ,ψ

)
, with the following

properties
B. 1) inf

1≤j≤N−1
ψ∈ΨT

T 2 (ψj+1 − ψj) → +∞, as T → ∞;

2) inf
ψ∈ΨT

T 2ψ1 → +∞, as T → ∞.

Definition 3.1. Any random vector

(49) θT = (A1T , B1T , ϕ1T , ψ1T , ..., ANT , BNT , ϕNT , ψNT )
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such that it is a point of the functional

(50) QT (θ) = T−1

T∫
0

[X(t)− g(t, θ)]
2
dt

absolute minimum on the parametric set ΘcT ⊂ R4N , where amplitudes Aj ,Bj ,j = 1, N ,
can take any values and parameters (ϕ, ψ) take values in the set Φc(ϕ, ϕ)×ΨcT , T > T0 >

0, is called LSE of the parameter θ0.

Theorem 3.1. Let the conditions A and B be satisfied. Then LSE θT is a strongly con-
sistent estimate of vector parameter θ0, namely: AjT → A0

j , BjT → B0
j , T

(
ϕjT − ϕ0j

)
→

0, T 2
(
ψjT − ψ0

j

)
→ 0 a.s., as T → ∞, j = 1, N .

Proof. The use of Theorem 1.1 for q = 2 and (b1, b2) = (ϕ, ψ) leads to the fact that the
proof of Theorem 3.1 does not differ from the proof of Theorem 1 in Ivanov and Hladun
[4]. □

Consider again the observation model of the type (46) with the random noise ε from
the Section 1 but with another regression function

(51) g(t, θ0) =

N∑
j=1

(
A0
j cos(ϕ

0
j t) +B0

j sin(ϕ
0
j t) + C0

j cos(ψ
0
j t

2) +D0
j sin(ψ

0
j t

2)
)
.

Statistical model of the type (46) with function (51) is said to be a multiple chirp-like
signal (see Grover, Kundu, and Mitra [3]) with unknown vector parameter

(52) θ0 =
(
A0

1, B
0
1 , ϕ

0
1, C

0
1 , D

0
1, ψ

0
1 , ..., A

0
N , B

0
N , ϕ

0
N , C

0
N , D

0
N , ψ

0
N

)
,(

A0
j

)2
+
(
B0
j

)2
> 0,

(
C0
j

)2
+
(
D0
j

)2
> 0, j = 1, N . Let us assume that the amplitudes A0

j ,
B0
j , C0

j , D0
j , j = 1, N , are different numbers and the frequencies ϕ0j , j = 1, N , and chirp

rates ψ0
j , j = 1, N , are different positive numbers that forms monotonically increasing

sequences. For some fixed numbers 0 ≤ ϕ < ϕ < +∞, 0 ≤ ψ < ψ < +∞ consider the
sets

Ψ(ψ,ψ) =
{
ψ = (ψ1, ..., ψN ) ∈ RN : ψ < ψ1 < ... < ψN < ψ

}
,

(53) Φ(ϕ, ϕ) =
{
ϕ = (ϕ1, ..., ϕN ) ∈ RN : ϕ < ϕ1 < ... < ϕN < ϕ

}
,

such that ϕ0 = (ϕ1, ..., ϕN ) ∈ Φ(ϕ, ϕ), ψ0 = (ψ1, ..., ψN ) ∈ Ψ(ψ,ψ).
Consider monotonically non-decreasing families of open sets ΦT ⊂ Φ

(
ϕ, ϕ

)
, ΨT ⊂

Ψ
(
ψ,ψ

)
, T > T0 > 0, containing vectors ϕ0,ψ0, such that

( ⋃
T>T0

ΦT

)c
= Φc

(
ϕ, ϕ

)
,( ⋃

T>T0

ΨT

)c
= Ψc

(
ψ,ψ

)
, with the following properties

C. 1) inf
1≤j≤N−1
ϕ∈Φc

T

T (ϕj+1 − ϕj) , inf
ϕ∈Φc

T

Tϕ1 → +∞, as T → ∞;

2) inf
1≤j≤N−1
ψ∈Ψc

T

T 2 (ψj+1 − ψj) , inf
ψ∈Ψc

T

T 2ψ1 → +∞, as T → ∞.

Definition 3.2. Any random vector

(54) θT = (A1T , B1T , ϕ1T , C1T , D1T , ψ1T , ..., ANT , BNT , ϕNT , CNT , DNT , ψNT ),

that minimizes the functional (50) with function g(t, θ) given by (51), on the parametric
set ΘcT ⊂ R6N , where amplitudes Aj , Bj , Cj , Dj , j = 1, N , can take any values and
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parameters ϕj , ψj , j = 1, N , take values in the set ΦcT × ΨcT , T > T0 > 0, is called LSE
of the parameter θ0 given by (52).

Theorem 3.2. Let the conditions A and C be satisfied. Then LSE θT is a strongly con-
sistent estimate of parameter (52) in the sense that AjT → A0

j , BjT → B0
j , T

(
ϕjT − ϕ0j

)
→ 0, CjT → C0

j , DjT → D0
j , T 2

(
ψjT − ψ0

j

)
→ 0 a.s., as T → ∞, j = 1, N .

Proof. We again use Theorem 1.1 for q = 2 and (b1, b2) = (ϕ, ψ). Then the proof of
Theorem 3.2 is the same as proof of Theorem 1 of the paper Ivanov and Hladun [6]. □

Acknowledgments. The authors are grateful to the reviewer for a number of useful
comments that contributed to improving the presentation of the article.
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Appendix 1. Majorants for integrals of cumulants products in the case
of the polynomials P3(t)

№ Product of cumulants Majorants
1. c16() |d16|a14||â||2T 4

2. c14()c2() |d14|d2a13||â||3T 4

3. c13()c3() |d13d3|a13||â||3T 4

4. c12()c4() |d12d4|a13||â||3T 4

5. c12()c2()c2() |d12|d22a12||â||4T 4

6. c11()c5() |d11d5|a13||â||3T 4

7. c11()c3()c2() |d11d3|d2a12||â||4T 4

8. c10()c6() |d10d6|a13||â||3T 4

9. c10()c4()c2() |d10d4|d2a12||â||4T 4

10. c10()c3()c3() |d10|d23a12||â||4T 4

11. c10()c2()c2()c2() |d10|d32a11||â||5T 4

12. c9()c7() |d9d7|a13||â||3T 4

13. c9()c5()c2() |d9d5|d2a12||â||4T 4

14. c9()c4()c3() |d9d4d3|a12||â||4T 4

15. c9()c3()c2()c2() |d9d3|d22a11||â||5T 4

16. c8()c8() d28a
13||â||3T 4

17. c8()c6()c2() |d8d6|d2a12||â||4T 4

18. c8()c5()c3() |d8d5d3|a12||â||4T 4

19. c8()c4()c4() |d8|d24a12||â||4T 4

20. c8()c4()c2()c2() |d8d4|d22a11||â||5T 4

21. c8()c3()c3()c2() |d8|d23d2a11||â||5T 4

22. c8()c2()c2()c2()c2() |d8|d42a10||â||6T 4

23. c7()c7()c2() d27d2a
12||â||4T 4

24. c7()c6()c3() |d7d6d3|a12||â||4T 4

25. c7()c5()c4() |d7d5d4|a12||â||4T 4

26. c7()c5()c2()c2() |d7d5|d22a11||â||5T 4

27. c7()c4()c3()c2() |d7d4d3|d2a11||â||5T 4

28. c7()c3()c3()c3() |d7||d3|3a11||â||5T 4

29. c7()c3()c2()c2()c2() |d7d3|d32a10||â||6T 4

30. c6()c6()c4() d26|d4|a12||â||4T 4

31. c6()c6()c2()c2() d26d
2
2a

11||â||5T 4

32. c6()c5()c5() |d6|d25a12||â||4T 4

33. c6()c5()c3()c2() |d6d5d3|d2a11||â||5T 4

34. c6()c4()c4()c2() |d6|d24d2a11||â||5T 4

35. c6()c4()c3()c3() |d6d4|d23a11||â||5T 4

36. c6()c4()c2()c2()c2() |d6d4|d32a10||â||6T 4

37. c6()c3()c3()c2()c2() |d6|d23d22a10||â||6T 4

38. c6()c2()c2()c2()c2()c2() |d6|d52a9||â||7T 4

39. c5()c5()c4()c2() d25|d4|d2a11||â||5T 4

40. c5()c5()c3()c3() d25d
2
3a

11||â||5T 4

41. c5()c5()c2()c2()c2() d25d
3
2a

10||â||6T 4

42. c5()c4()c4()c3() |d5|d24|d3|a11||â||5T 4

43. c5()c4()c3()c2()c2() |d5d4d3|d22a10||â||6T 4

44. c5()c3()c3()c3()c2() |d5d33|d2a10||â||6T 4

45. c5()c3()c2()c2()c2()c2() |d5d3|d42a9||â||7T 4

46. c4()c4()c4()c4() d44a
11||â||5T 4

47. c4()c4()c4()c2()c2() |d4|3d22a10||â||6T 4

48. c4()c4()c3()c3()c2() d24d
2
3d2a

10||â||6T 4

49. c4()c4()c2()c2()c2()c2() d24d
4
2a

9||â||7T 4

50. c4()c3()c3()c3()c3() |d4|d43a10||â||6T 4

51. c4()c3()c3()c2()c2()c2() |d4|d23d32a9||â||7T 4

52. c4()c2()c2()c2()c2()c2()c2() |d4|d62a8||â||8T 4

53. c3()c3()c3()c3()c2()c2() d43d
2
2a

9||â||7T 4

54. c3()c3()c2()c2()c2()c2()c2() d23d
5
2a

8||â||8T 4

55. c2()c2()c2()c2()c2()c2()c2()c2() d82a
7||â||9T 4
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Appendix 2. The first 16 numbers Sm

m The Bell numbers Bm The numbers Sm
1. 1 0
2. 2 1
3. 5 1
4. 15 4
5. 52 11
6. 203 41
7. 877 162
8. 4 140 715
9. 21 147 3 425
10. 115 975 17 722
11. 678 570 98 263
12. 4 213 597 580 317
13. 27 644 437 3 633 280
14. 190 899 322 24 011 157
15. 1 382 958 545 166 888 165
16. 10 480 142 147 1 216 070 380
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