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PROPERTIES OF THE VERTEX OF A CONVEX HULL GENERATED

BY A POISSON POINT PROCESS INSIDE A PARABOLA

A convex hull generated by the implementation of a Poisson point process inside a

parabola is considered in the article. At that, the measure of intensity of the Poisson
law is related to regularly varying functions near the boundary of the support. It is

proven that the domain bounded by the perimeters of the convex hull and the bound-

ary of the support - a parabola, can be represented as a sum of independent identically
distributed random variables. Moreover, this value does not depend on the vertices

of the convex hull itself. It is worth noting that having approximated the binomial

point process by a Poisson one, P.Groeneboom [6], A.J.Cabo and P.Groeneboom [3],
I.Hueter [9], T.Hsing [8] and others, using the martingale properties of stationary

vertex processes, proved various options of the central limit theorem for functionals
of a random convex hull in the case when the original distribution is uniformly con-

centrated in a convex polygon or ellipse. In this paper, the exact distribution and

conditional distribution of vertex processes are found when the convex hull is gener-
ated by a inhomogeneous Poisson point process inside a parabola. In some special

cases, it is shown that the area between the perimeter of the convex hull and the

support of the distribution is expressed by the sum of independent random variables.

1. Introduction

Asymptotic analysis of order statistics is important in estimating unknown parameters
of distribution and in determining the critical domain in testing statistical hypotheses. In
particular, if the boundaries of the domain depend on the unknown estimated parameters,
then the estimates are constructed using the extreme terms of the variation series, and
they are consistent, asymptotically unbiased estimates and sufficient statistics. The
convex hull is the most complete multivariate analog of extreme observations of a sample,
in particular, if the support of a uniform sample is a convex domain, then the convex hull
for estimating the support of the distribution is a consistent, asymptotically unbiased
estimate and sufficient statistics, as in the one-dimensional case.

This research is devoted to the study of the properties of convex hulls generated by
the implementation of a homogeneous Poisson process on a plane inside the parabola. It
is worth noting that the field of study of the convex hull relates to stochastic geometry,
so studying the properties of even the simplest functionals of convex hulls, such as the
number of vertices or the area, is not a simple task. This explains the fact that before
the well-known work of P. Groeneboom [6] on the central limit theorem for the number
of vertices of a convex hull, the main progress in this area was considered to be the study
of asymptotic expressions for the average values of such functionals (see, for example, [4,
18, 17]. Due to the complexity of the object of study, research on asymptotic expressions
of dispersion was not conducted until the publication of articles by C. Buchta [1, 2] and
J. Pardon [14, 15].

Groeneboom’s [6] main achievement is his use of the well-known property of homoge-
neous binomial point processes, which states that near the boundary of the support, such
a process is almost indistinguishable from a homogeneous Poisson point process inside a
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”segment” of a parabola. This idea allowed him to reduce the number of problems to be
solved when studying the asymptotic properties of binomial point processes. Following
P. Groeneboom’s work [6], we believe it is sufficient to study the properties of the vertex
process of the convex hull generated by a inhomogeneous Poisson point process inside a
parabola.

2. Statement of the problem and results

Denote the smallest root of the equation by bn:

(1) nx−(β+ 1
2 )L(x) = 1,

where L(x) is the slowly varying function (s.v.f) in sense of Karamata and β ≥ 1. Below,
in the definition of the intensity measure, differentiability of L(x) is required, therefore
from the integral representation s.v.f. (see E. Seneta [16]) we accept

(2) L(u) = exp

{∫ u

1

ε(t)

t
dt

}
, ε(t) → 0, t → ∞.

From relation (1) according to [16], there exists some s.v.f. L∗(x) such that bn =

n
2

2β+1L∗(x). Therefore, bn → ∞ as n → ∞.
Let

Rn =

{
(x, y) :

x2

2bn
≤ y

}
⊂ R2.

We introduce the following measure

(3) Λn(A) =


1

2πL(bn)
√
bn

∫∫
A

∂

∂y

[(
y − x2

2bn

)β

L

(
bn

y − x2

2bn

)]
dxdy if A ⊂ Rn,

0 if A ̸⊂ Rn,

if β = 1 and L(x) = 2 − 1
x for x ≥ 1, then the measure under consideration coincides

with the measure of P.Groeneboom [6].
Let Πn(·) be a inhomogeneous Poisson point process (i.p.p.p.) with intensity Λn(·),

and let (X1, Y1), (X2, Y2), ... be realizations of i.p.p.p. Πn(·) is contracted measure to
Rn (in what follows, denoted by Π(Rn) ). Denote the convex hulls generated by these
random points by Cn and their set of vertices by Zn.

Let

(4) e0 = (0, 1)

Denote by z0 ∈ Zn the vertices for which (e0, z − z0) ≥ 0 for all z ∈ Zn.
It is obvious that z0 is determined uniquely and almost certainly.
In this case, the straight line

(5) (e0, z − z0) = 0

is the supporting line for Cn.
We are interested in the asymptotic properties of the domain bounded between perime-

ters Cn and parabola y = x2

2bn
.

Consider the domain bounded by parabola y = x2

2bn
and the supporting line (5).

Denote the set of interior points of this domain by δ0 and the measures of this domain
by

(6) ξ0 = Λn(δ0).
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Figure 1. Illustration of zj and δj .

Let z0 = (u0, v0), then it is easy to see that

ξ0 = Λn(δ0) =
1

2π
√
bnL(bn)

∫ v0

0

dy

∫ √
2bnv0

−
√
2bnv0

∂

∂y

{(
y − x2

2bn

)β

L

(
bn

y − x2

2bn

)}
dx =

=

√
2

πL(bn)

∫ v0

0

dy
∂

∂y

yβ+
1
2

∫ √
2bnv0

0

(
1− x2

2ybn

)β

L

 bn

y
(
1− x2

2ybn

)
 d

(
x√
2ybn

)
=

=

√
2

πL(bn)

∫ v0

0

dy
∂

∂y

{
yβ+

1
2

∫ 1

0

(
1− t2

)β
L

(
bn

y(1− t2)

)
dt

}
=

=
1√

2πL(bn)

∫ v0

0

dy
∂

∂y

yβ+
1
2

∫ 1

0

tβL
(

bn
yt

)
√
1− t

dt

 =
v
β+ 1

2
0√

2πL(bn)

∫ 1

0

tβL
(

bn
yt

)
√
1− t

dt

Let ζ0 = λ(δ0), it is easy to see that

ζ0 =

∫ x0

−x0

(
v0 −

u2

2bn

)
du =

∫ √
2bnv0

−
√
2bnv0

(
v0 −

u2

2bn

)
du = 2

∫ √
2bnv0

0

(
v0 −

u2

2bn

)
du =

(7) =
4
√
2bnv

3
2
0

3
,

where λ(·) is the Lebesgue measure and x0 =
√
2bnv0.

Let

(8) η0 =
u0 + x0

2x0
=

u0

2
√
2bnν0

+
1

2
.

Then from (3) and (4) it is easy to obtain that

(9) u0 = x0(2η0 − 1) and bnζ0 =
2x3

0

3
.

Number the vertices Cn, going around the boundary counterclockwise. Since z0 is
already defined, each of the vertices thereby receives its own number j, −∞ < j < ∞.

Denote by xj , j ≥ 1 the abscissa of the intersection of the parabola v = u2

2bn
and the

straight lines passing through vertices zj−1 and zj respectively. Similarly, denote by

xj , j ≤ −1 the abscissa of the intersection of the parabola v = u2

2bn
and the straight lines

passing through zj , zj+1, respectively.
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Let δj , j ̸= 0 be a set of interior points of a domain bounded by a segment con-
necting points zj−1 and

(
xj−1, x

2
j−1 /(2bn)

)
, zj−1 and

(
xj , x

2
j /(2bn)

)
, with parabola

v = u2

2bn
if j ≥ 1 , a segment connecting points zj+1 and

(
xj+1, x

2
j+1 /(2bn)

)
, zj+1 and(

xj , x
2
j /(2bn)

)
, with parabola v = u2

2bn
if j ≤ −1. Let ξj = Λn(δj).

The following is true

Theorem 2.1. If (1) – (5) are satisfied, then
a) P (z0 ∈ (du0, dv0))

=
1

2π
√
bnL(bn)

exp

− v
β+ 1

2
0√

2πL(bn)

∫ 1

0

tβL
(

bn
ν0t

)
√
1− t

dt


· ∂

∂v0


(
v0 −

u2
0

2bn

)β

L

 bn

v0 − u2
0

2bn

 du0dv0;

b) P (z1 ∈ (du, dv) /z0 = (u0, v0) )

=
1

2π
√
bnL(bn)

exp

{
− 1√

2πL(bn)

∫ √
2bns1

u0−ρ1bn

(
s1 −

t2

2bn

)β

L

(
bn

s1 − t2

2bn

)
dt

−
∫ √

2bnv0

u0

(
v0 −

t2

2bn

)β

L

(
bn

v0 − t2

2bn

)
dt

}
· ∂

∂v

{(
v − u2

2bn

)β

L

(
bn

v − u2

2bn

)}
dudv,

where ρ1 = v−v0
u−u0

and s1 = v0 − ρ1u0 +
ρ2
1bn
2 .

c) P (zi+1 ∈ (dui+1, dvi+1) /zi−1 = (ui−1, vi−1), zi = (ui, vi) )

=
1

2π
√
bnL(bn)

exp

{
− 1√

2πL(bn)

(
s
β+ 1

2
i (b)

∫ 1

ui(b)

(1− t2)βL

(
bn

si(b)(1− t2)

)
dt

− s
β+ 1

2
i (a)

∫ 1

ui(a)

(1− t2)βL

(
bn

si(a)(1− t2)

)
dt

)}

· ∂

∂vi+1


(
vi+1 −

u2
i+1

2bn

)β

L

 bn

vi+1 −
u2
i+1

2bn

 dui+1dvi+1,

where a = vi−vi−1

ui−ui−1
, b = vi+1−vi

ui+1−ui
, si(a) = vi − aui +

a2bn
2 and ui(a) =

ui−abn√
2bnsi(a)

.

Proof. The same procedure as in the proof of Lemma 3.1 [10] is conducted. Denote

by A+
∆v(u0, v0) and A−

∆v(u0, v0) the sets bounded by lines v = v0 + ∆v, v = u2

2bn
and

v = v0 −∆v, v = u2

2bn
, respectively.

Let ∆u,v = [u0, u0 +∆u] × [v0, v0 +∆v] and let for the definiteness ∆u > 0,∆v > 0
(see Fig. 2).

Denote by πn(A) the number of points of implementation of i.p.p.p. Π(·) in A, then
from the definition of a Poisson point process we have

P (z0 ∈ ∆u,v) ≤ P
(
πn(∆u,v) ≥ 1, πn

(
A−

∆v(u0, v0)
)
= 0
)
.

From the independence of the increment of the Poisson process, we obtain an upper
bound:

P (z0 ∈ ∆u,v) ≤ P (πn(∆u,v) ≥ 1) · P
(
πn

(
A−

∆v(u0, v0)
)
= 0
)
=

=

∞∑
k=1

(Λn(∆u,v))
k

k!
exp {−Λn(∆u,v)} · exp

{
−Λn(A

−
∆v(u0, v0))

}
≤
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Figure 2. Illustration of z0,∆u,v, A
−
∆v(u0, v0) and A+

∆v(u0, v0).

(10) ≤ Λn(∆u,v) · exp {−Λn(∆u,v)} · (1 +O (Λn(∆u,v))) · exp
{
−Λn(A

−
∆v(u0, v0))

}
.

On the other side,

(11) P (z0 ∈ ∆u,v) ≥ P
(
πn(∆u,v) = 1, πn

(
A+

∆v(u0, v0)
)
= 0
)
.

Similar to (10), we obtain a lower bound:

P (z0 ∈ ∆u,v) ≥ P (πn(∆u,v) = 1) · P
(
πn

(
A+

∆v(u0, v0)
)
= 0
)
≥

(12) ≥ Λn(∆u,v) · exp {−Λn(∆u,v)} · exp
{
−Λn(A

+
∆v(u0, v0))

}
.

By definition of measure Λn(·), for ∆u → 0,∆v → 0 we have

(13) Λn(∆u,v) =
∂

∂v0

(v0 − u2
0

2bn

)β

L

 bn

v0 − u2
0

2bn

∆u∆v(1 + o(1)).

Thus, for ∆u → 0,∆v → 0 we have

Λn(A
+
∆v(u0, v0)) = Λn(δ0)(1 + o(1)), Λn(A

−
∆v(u0, v0)) = Λn(δ0)(1 + o(1)).

From this and from (10) - (13) follows the proof of the first assertion of the theorem.
Now we will prove the third assertion from which the second one follows.

Reasoning in the same way as in the proof of the first assertion, it is easy to see that

P (zi+1 ∈ (dui+1, dvi+1) /zi−1 = (ui−1, vi−1), zi = (ui, vi) )

= P (π (Λn(δi+1)) = 0)
∂

∂vi+1

(vi+1 −
u2
i+1

2bn

)β

L

 bn

vi+1 −
u2
i+1

2bn

 dui+1dvi+1

= exp {−Λn(δi+1)}
∂

∂vi+1

(vi+1 −
u2
i+1

2bn

)β

L

 bn

vi+1 −
u2
i+1

2bn

 dui+1dvi+1.

On the other hand, we have
Λn(δi+1)

=
1

2π
√
bnL(bn)

{∫ bbn+
√

2bnsi(b)

ui

(
b(τ − ui) + vi −

τ2

2bn

)β

L

(
bn

b(τ − ui) + vi − τ2

2bn

)
dτ
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Figure 3. Illustrations of zi−1, zi, zi+1.

−
∫ abn+

√
2bnsi(a)

ui

(
a(τ − ui) + vi −

τ2

2bn

)β

L

(
bn

a(τ − ui) + vi − τ2

2bn

)
dτ

}

=
1

2π
√
bnL(bn)

{∫ bbn+
√

2bnsi(b)

ui

(
si(b)−

(τ − bbn)
2

2bn

)β

L

(
bn

si(b)− (τ−bbn)2

2bn

)
dτ

−
∫ abn+

√
2bnsi(a)

ui

(
si(a)−

(τ − abn)
2

2bn

)β

L

(
bn

si(a)− (τ−abn)2

2bn

)
dτ

}
.

In the last expression, replacing variable τ−bbn√
2bnsi(b)

through t in the first interval and

again replacing τ−abn√
2bnsi(a)

through t in the second interval, we obtain a proof of the third

assertion of the theorem.
To prove the second assertion of Theorem 2.1 instead of

P (zi+1 ∈ (dui+1, dvi+1) /zi−1 = (ui−1, vi−1), zi = (ui, vi) )

we write

P (z1 ∈ (du1, dv1) /z0 = (u0, v0) ) ,

then from the last expression, in the case i = 0, a = 0 presenting considerations similar
to the ones given above, we obtain assertion c) of Theorem 2.1. □

Then, we consider convex hulls generated by homogeneous Poisson point processes.

3. Properties of the vertex of a convex hull generated by the
homogeneous Poisson point process

An interesting property of homogeneous Poisson point processes (h.p.p.p.) was es-
tablished when using methods to prove Theorem 2.1. A similar assumption was first
considered in [12], and then in [5], [7], [11], [13].

Let now Π(·) be a h.p.p.p. restricted in Rn, that is, λ(·) is a measure of intensity of the
Poisson law – Lebesgue measure. Next, let (X1, Y1); (X2, Y2); ... be the implementation
of h.p.p.p. in Rn, Cn be the convex hulls generated by these random points and Zn –
their sets of vertices.

In a similar way, the elements of sets Zn are denoted by zj ,−∞ < j < ∞.
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Note that

η0 =
u0 + x0

2x0
=

u0

2
√
2bnv0

+
1

2
and ζ0 =

4
√
2bnv

3
2
0

3
.

Then the following theorem is true.

Theorem 3.1. If conditions (1) – (5) are satisfied, then ζ0 and η0 are independent
random variables, moreover, ζ0 is the standard exponentially distributed variable, and η0
is the uniformly distributed variable.

Proof. If Λn(·) is replaced with λ(·), then from (6), it follows that ξ0 = Λn(δ0) = ζ0,
then from assertion a) of Theorem 2.1 the joint density of ζ0 and η0 is e−ζ0 . Hence,
similarly to the proof of Lemma 3.1 [10] from (3–4) and (6), it suffices to show that after
the change of variables given below, the Jacobian equals to 1.

ζ0 =
4
√
2bnv

3
2
0

3
,

η0 =
u0

2
√
2bnv0

+
1

2
,

where ζ0 ≥ 0, 0 ≤ η0 ≤ 1. Hence, we obtain:

∂ζ0
∂u0

= 0,
∂ζ0
∂v0

= 2
√
2bnv0,

∂η0
∂u0

=
1

2
√
2bnv0

,
∂η0
∂v0

= − u0

4v0
√
2bnv0

.

Then the Jacobian transformation is |J | = 1. The proof of the Theorem is completed. □

Then let δj ,−∞ < j < ∞, have the same meaning as in the previous section and
ζj = λ(δj). To simplify, consider the case of j > 0; the case of j < 0 is treated in a
similar way. Then it is easy to verify that

ζj+1 =

∫ xj+1

uj

(
ρj+1(t− uj) + vj −

t2

2bn

)
dt−

∫ xj

uj

(
ρj(t− uj) + vj −

t2

2bn

)
dt

= ρj+1
(xj+1 − uj)

2

2
+ vj(xj+1 − uj)−

1

6bn
(x3

j+1 − u3
j )

(14) −
(
ρj

(xj − uj)
2

2
+ vj(xj − uj)−

1

6bn
(x3

j − u3
j )

)
,

where ρj =
vj−vj−1

uj−uj−1
.

Let

(15) ηj+1 =

(
uj+1 − uj

xj+1 − uj

)2

, j ≥ 0

From here it is easy to see that

ζj+1 ≥ 0, 0 ≤ ηj+1 ≤ 1.

Theorem 3.2. If conditions (1) – (5) are satisfied, then ζj , ηk, j, k ≥ 1 are independent
random variables, and

ζj
dis
= ζ0, ηk

dis
= η0.

Proof. Similar to the proof of Theorem 3.1, if Λn(·) is replaced with λ(·), then ξi =
Λn(δi) = ζi. From this and from assertions c) and c) of Theorem 2.1 for all i ≥ 1, the
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joint conventional density ζi and ηi, under conditions ζi−1 and ηi−1 is eζi . Therefore, to
prove Theorem 3.2, it suffices to show that the Jacobian of the change of variables

ζj+1 = ρj+1
(xj+1 − uj)

2

2
+ vj(xj+1 − uj)−

1

6bn
(x3

j+1 − u3
j )−

−
(
ρj

(xj−uj)
2

2 + vj(xj − uj)− 1
6bn

(x3
j − u3

j )
)
,

ηj+1 =

(
uj+1 − uj

xj+1 − uj

)2

,

j ≥ 0. Here, it is easy to verify that ζj+1 ≥ 0, 0 ≤ ηj+1 ≤ 1.
On the other hand, we have

∂ρj+1

∂uj+1
= − vj+1 − vj

(uj+1 − uj)2
,

∂ρj+1

∂vj+1
=

1

uj+1 − uj
.

Making a change of variables in the form (14), (15) and taking into account that xj+1 is
the solution to the following equation

(16) ρj+1(x− uj) + vj =
x2

2bn

we obtain

∂ζj+1

∂uj+1
= − vj+1 − vj

(uj+1 − uj)2
· (xj+1 − uj)

2

2
+

(
ρj+1(xj+1 − uj) + vj −

x2
j+1

2bn

)
· ∂xj+1

∂uj+1

= − vj+1 − vj
(uj+1 − uj)2

· (xj+1 − uj)
2

2
,

∂ζj+1

∂vj+1
=

1

uj+1 − uj
· (xj+1 − uj)

2

2
+

(
ρj+1(xj+1 − uj) + vj −

x2
j+1

2bn

)
· ∂xj+1

∂vj+1

=
(xj+1 − uj)

2

2(uj+1 − uj)
,

∂ηj+1

∂uj+1
=

2(uj+1 − uj)

xj+1 − uj
· 1

xj+1 − uj
− 2(uj+1 − uj)

2

(xj+1 − uj)3
· ∂xj+1

∂uj+1
,

∂ηj+1

∂vj+1
= −2(uj+1 − uj)

2

(xj+1 − uj)3
· ∂xj+1

∂vj+1
,

From here follows the Jacobians transformation

(17) J =
∂ζj+1

∂uj+1
· ∂ηj+1

∂vj+1
− ∂ζj+1

∂vj+1
· ∂ηj+1

∂uj+1
= −1+

vj+1 − vj
xj+1 − uj

· ∂xj+1

∂vj+1
+

uj+1 − uj

xj+1 − uj
· ∂xj+1

∂uj+1

It is easy to verify that the solution to the equation has the following form:

xj+1 = ρj+1bn +

√√√√2bn

(
vj − ρj+1uj +

ρ2j+1bn

2

)
then

∂xj+1

∂uj+1
=

∂xj+1

∂ρj+1
· ∂ρj+1

∂uj+1
= −bn · xj+1 − uj√

2bnsj+1

· vj+1 − vj
(uj+1 − uj)2

,

∂xj+1

∂vj+1
=

∂xj+1

∂ρj+1
· ∂ρj+1

∂vj+1
= bn · xj+1 − uj√

2bnsj+1

· 1

uj+1 − uj
,

where sj+1 = vj − ρj+1uj +
ρ2
j+1bn
2 . From this and from (16), (15) we obtain |J | = 1.

The theorem is proven.
□
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