Theory of Stochastic Processes
Vol. 28 (44), no. 2, 2024, pp. 21-29

I. M. KHAMDAMOV AND KH. M. MAMATOV

PROPERTIES OF THE VERTEX OF A CONVEX HULL GENERATED
BY A POISSON POINT PROCESS INSIDE A PARABOLA

A convex hull generated by the implementation of a Poisson point process inside a
parabola is considered in the article. At that, the measure of intensity of the Poisson
law is related to regularly varying functions near the boundary of the support. It is
proven that the domain bounded by the perimeters of the convex hull and the bound-
ary of the support - a parabola, can be represented as a sum of independent identically
distributed random variables. Moreover, this value does not depend on the vertices
of the convex hull itself. It is worth noting that having approximated the binomial
point process by a Poisson one, P.Groeneboom [6], A.J.Cabo and P.Groeneboom [3],
L.Hueter [9], T.Hsing [8] and others, using the martingale properties of stationary
vertex processes, proved various options of the central limit theorem for functionals
of a random convex hull in the case when the original distribution is uniformly con-
centrated in a convex polygon or ellipse. In this paper, the exact distribution and
conditional distribution of vertex processes are found when the convex hull is gener-
ated by a inhomogeneous Poisson point process inside a parabola. In some special
cases, it is shown that the area between the perimeter of the convex hull and the
support of the distribution is expressed by the sum of independent random variables.

1. INTRODUCTION

Asymptotic analysis of order statistics is important in estimating unknown parameters
of distribution and in determining the critical domain in testing statistical hypotheses. In
particular, if the boundaries of the domain depend on the unknown estimated parameters,
then the estimates are constructed using the extreme terms of the variation series, and
they are consistent, asymptotically unbiased estimates and sufficient statistics. The
convex hull is the most complete multivariate analog of extreme observations of a sample,
in particular, if the support of a uniform sample is a convex domain, then the convex hull
for estimating the support of the distribution is a consistent, asymptotically unbiased
estimate and sufficient statistics, as in the one-dimensional case.

This research is devoted to the study of the properties of convex hulls generated by
the implementation of a homogeneous Poisson process on a plane inside the parabola. It
is worth noting that the field of study of the convex hull relates to stochastic geometry,
so studying the properties of even the simplest functionals of convex hulls, such as the
number of vertices or the area, is not a simple task. This explains the fact that before
the well-known work of P. Groeneboom [6] on the central limit theorem for the number
of vertices of a convex hull, the main progress in this area was considered to be the study
of asymptotic expressions for the average values of such functionals (see, for example, [4,
18, 17]. Due to the complexity of the object of study, research on asymptotic expressions
of dispersion was not conducted until the publication of articles by C. Buchta [1, 2] and
J. Pardon [14, 15].

Groeneboom’s [6] main achievement is his use of the well-known property of homoge-
neous binomial point processes, which states that near the boundary of the support, such
a process is almost indistinguishable from a homogeneous Poisson point process inside a
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”segment” of a parabola. This idea allowed him to reduce the number of problems to be

solved when studying the asymptotic properties of binomial point processes. Following
P. Groeneboom’s work [6], we believe it is sufficient to study the properties of the vertex
process of the convex hull generated by a inhomogeneous Poisson point process inside a
parabola.

2. STATEMENT OF THE PROBLEM AND RESULTS
Denote the smallest root of the equation by b,,:
(1) nz=(B+3) L(z) = 1,

where L(x) is the slowly varying function (s.v.f) in sense of Karamata and 8 > 1. Below,
in the definition of the intensity measure, differentiability of L(x) is required, therefore
from the integral representation s.v.f. (see E. Seneta [16]) we accept

@) L(u)zexp{/lug(tt)dt}, () >0, - .

From relation (1) according to [16], there exists some s.v.f. L*(x) such that b, =
nﬁL*(x) Therefore, b, — 00 as n — 0.
Let

z? 9
R, =< (z,y): ﬁgy C R*.

We introduce the following measure

1 // ; ( m2 )ﬁ = '
27 L(b /b Y- L| ——% ||dxdy if ACR,,
) )= LGV ay[ )\ i
0 ifA¢ R,

if 8=1and L(z) = 2— 1 for > 1, then the measure under consideration coincides
with the measure of P.Groeneboom [6].

Let II,,(-) be a inhomogeneous Poisson point process (i.p.p.p.) with intensity A, (-),
and let (X1,Y7), (X2,Y32),... be realizations of i.p.p.p. II,(-) is contracted measure to
R, (in what follows, denoted by II(R,,) ). Denote the convex hulls generated by these
random points by C,, and their set of vertices by Z,.

Let

(4) €0 = (07 1)

Denote by zg € Z,, the vertices for which (eg,z — z9) > 0 for all z € Z,,.
It is obvious that zj is determined uniquely and almost certainly.
In this case, the straight line

(5) (e0,2—20) =0

is the supporting line for C),.
We are interested in the asymptotic properties of the domain bounded between perime-
2
ters C), and parabola y = 5—.

Consider the domain bounded by parabola y = % and the supporting line (5).

Denote the set of interior points of this domain by dg and the measures of this domain
by

(6) §o = An(do).
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FIGURE 1. Illustration of z; and d;.

Let 29 = (ug,vg), then it is easy to see that

V2bnv0 22 B
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Let (o = A(dp), it is easy to see that

o) u2 V2by,vo ’LL2 V2bnvo u2
= vy — —— du:/ (v—)du:2/ (v—)du:
G /, o ( 07 2, ) v \ © 2B 0 07 2,

h
7N
I o
%"H ®
3 [ ¥
N———
—
Q.
5
Il

3
4/2b, 03
g = LDt
where A(+) is the Lebesgue measure and zy = v/2b,,vp.
Let
Ug + o Up 1
8 = = + —
) S W o D)

Then from (3) and (4) it is easy to obtain that
23:0
3
Number the vertices C,,, going around the boundary counterclockwise. Since zg is
already defined, each of the vertices thereby receives its own number j, —oco < j < oo.
Denote by x;, j > 1 the abscissa of the intersection of the parabola v = % and the
straight lines passing through vertices z;_; and z; respectively. Similarly, denote by

9) ug = xo(2m0 — 1) and b,{o =

x;,7 < —1 the abscissa of the intersection of the parabola v = % and the straight lines
passing through z;, z;41, respectively.
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Let d;, j # 0 be a set of interior points of a domain bounded by a segment con-
necting points z;_1 and (z;_1,23_, /(2bs)), zj—1 and (x;,23 /(2b,)), with parabola

v = % if 7 > 1, a segment connecting points z;4; and (a:jﬂ,x?H /(2bn))7 Zjy1 and

(xj,x? /(2b,,)), with parabola v = % if j < —1. Let & = A, ().
The following is true

Theorem 2.1. If (1) - (5) are satisfied, then
a) P (z € (duo, dvy))

1 61 (o
1 T /lt L(Vot)dt
0

0
B —
2mv/bnL(bn) T V2rL(by) T—1

2\ B b
9 (v Yo ) Ll —2 ) Y dugduo;
(91}0 Vo 0

b) P (21 € (du,dv) [z = (uo,v0))

V2,51 2\ 5
! e 1 / <5 ¢ > L bn dt
= - X —_—_ —_—— e —
27T\/EL(bn) p \/§7TL(bn) uo—plbn ! 2b’ﬂ S1 — %

V2b,v0 2\ B 2\ 7
_ vo — L L bin dt s - 2 v — u L by dudv,
2b 12 0 2b u?
uo n Vo — 2, (Y n v — o

2
_ by
where p; = “—”‘; and s1 = vy — p1ug + p12 .

U—u

¢) P(zit1 € (duip1,dvigr) [zi-1 = (wi—1,vi-1), 2z = (U3, v) )
v e [ e (b
21D, L(by) p{ V271 L(by) ( o 10 /ui(b)(l FrL <Si(b)(1 - t2)) dt

— () /uj(a)(l - *)°L <s(a)é)1n—t2)> dt) }

B
o) u? b
+1 n
.811 Vi41 — % L 2 du;iy1dvig,
1+1 ) _ i41
1+ n Vit1 %
2
. Vi—Vi—1 _ Vi41—0; . o . a“b, . __ui—aby
where a = ==, b= e si(a) = vy — au; + 5 and ui(a) = NCOR

Proof. The same procedure as in the proof of Lemma 3.1 [10] is conducted. Denote
by AX,(uo,vo) and Ax, (ug,vo) the sets bounded by lines v = vy + Av, v = % and
v=uvg— Av, v= %, respectively.
Let Ay, = [uo, ug + Au] X [vg,v9 + Av] and let for the definiteness Au > 0,Av > 0
(see Fig. 2).
Denote by 7, (A) the number of points of implementation of i.p.p.p. II(:) in A, then
from the definition of a Poisson point process we have

P(ZO S Au,v) < P (’/Tn(Au,v) > ].,’/Tn (AKU(UO,U())) = 0) .

From the independence of the increment of the Poisson process, we obtain an upper
bound:
P(zg € Ayyw) < P(mn(Au) = 1)+ P (mn (Ax, (w0, v0)) = 0) =

oo k
=30 Bl (B} e {43, (0, 00)} <
k=1
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FI1GURE 2. Tllustration of zg, Ay v, Ax, (w0, v0) and sz(uo,vo).

(10) < An(Au’v) : eXp{_An(Au’v)} : (1 +0 (An(Au,v))) - €Xp {_An(AZv(uova))} .
On the other side,

(11) P(ZO € Au,v) > P (WW(AU;U) = 1771—" (AZU(UO’UO)) = 0) .
Similar to (10), we obtain a lower bound:

P(20 € Auy) > P (mp(Duy) = 1) - P (mn (AX, (o, v0)) = 0) >

(12) > Ap(Ayw) -exp{—An(Ayu)} - exp {—An(AXv(uo, vo))} .
By definition of measure A, (-), for Au — 0, Av — 0 we have
2\ 8 b
13)  AnAun) = 2 (-2} L[ Lo ) ) Awde( +o(1)).
’ 8’00 2b, Uy — ZUTO

Thus, for Au — 0, Av — 0 we have
An (AR, (u0,v0)) = An(d0) (L + 0(1)), An(Ax,(u0,v0)) = An (o) (1 +0(1)).

From this and from (10) - (13) follows the proof of the first assertion of the theorem.
Now we will prove the third assertion from which the second one follows.
Reasoning in the same way as in the proof of the first assertion, it is easy to see that

P (zi41 € (duit1,dvip1) /zim1 = (Uim1,0i21), 20 = (U4, 1))

— 0 uzerl g bn
= P (7 (An(di+1)) = 0) 5 Vit ~ 5y Ll ———— | | duivrdvipa
a’Uz+1 2 n Vig1 — 21b+1
) w2\’ b
= exp {_An(5z+1)} ] Vi+1 — +1 L 7an dui+1dvi+1.
8Uz+1 2bn Vig1 — zb+1
7 2b,,

On the other hand, we have
An(5i+1)

1 bby++/2b, 5 (b) 72 B b
=S o T b(r—wi)tvi—5—| L “ = | dr
27+/bn L(bn) L ( (r-u)+o 2bn> b(t —u;) +v; — 55
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F1GURE 3. Hlustrations of z;_1, 25, Zi+1-

abp++/2by s (a) 7_2 B b
_/ (a(T—ui)—i—vi—) L - = | dr
wi 20y, a(T — ;) +vi — g5

1 bby, +4/2by, 5;(b) (t — bb )2 B b
- NO i ) R
QW\/EL(bn) {~/7;1 <5 ( ) 20y, ) Sl(b) _ (= bba)? !

2by,

abp++/2b,si(a) (1 — aby,)? ﬁL b, p
—/u_ (81'(&)—%”) ) e | T

i 2b,

. . . T—bb, . .
In the last expression, replacing variable Vs ) through t in the first interval and

: : T—aby
again replacing Joonsi(@
assertion of the theorem.

To prove the second assertion of Theorem 2.1 instead of

through ¢ in the second interval, we obtain a proof of the third

P (zit1 € (duipr, dvigr) [zie1 = (Wim1,vi-1), 2 = (us,05))

we write
P(Zl S (du1,d'U1) /ZO = (UO7U0)) )

then from the last expression, in the case ¢ = 0, a = 0 presenting considerations similar
to the ones given above, we obtain assertion c) of Theorem 2.1. (]

Then, we consider convex hulls generated by homogeneous Poisson point processes.

3. PROPERTIES OF THE VERTEX OF A CONVEX HULL GENERATED BY THE
HOMOGENEOUS POISSON POINT PROCESS

An interesting property of homogeneous Poisson point processes (h.p.p.p.) was es-
tablished when using methods to prove Theorem 2.1. A similar assumption was first
considered in [12], and then in [5], [7], [11], [13].

Let now II(-) be a h.p.p.p. restricted in R,,, that is, A(-) is a measure of intensity of the
Poisson law — Lebesgue measure. Next, let (X7,Y7); (X2,Y2);... be the implementation
of h.p.p.p. in R,, C, be the convex hulls generated by these random points and Z,, —
their sets of vertices.

In a similar way, the elements of sets Z,, are denoted by z;, —co < j < 0.
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Note that

ug + o Uo n 1 d ¢
= = — an =
= w220 | 2 0

Then the following theorem is true.

4\/2bnv§
—s

Theorem 3.1. If conditions (1) — (5) are satisfied, then (o and ny are independent
random variables, moreover, (g is the standard exponentially distributed variable, and ngy
is the uniformly distributed variable.

Proof. Tt A, (+) is replaced with A(-), then from (6), it follows that &, = A, (dp) = Co,
then from assertion a) of Theorem 2.1 the joint density of (; and 7 is e~<°. Hence,
similarly to the proof of Lemma 3.1 [10] from (3-4) and (6), it suffices to show that after
the change of variables given below, the Jacobian equals to 1.

3
420,05
u3:) 1

:74—7’
oy by | 2

where (p > 0, 0 < ny < 1. Hence, we obtain:

Co

%o _g %0 _g/pppe 0 _ L O w0
(911,0 ’ 81)0 o 8u0 2\/21)71’1107 81}0 41}0\/%.

Then the Jacobian transformation is |J| = 1. The proof of the Theorem is completed. O

Then let 6;, —0o0 < j < oo, have the same meaning as in the previous section and
¢; = A(6;). To simplify, consider the case of j > 0; the case of j < 0 is treated in a
similar way. Then it is easy to verify that

Tj41 t2 zj t2
Git1 = /u (Pj+1(t—uj) +v; - 2b”> dt — LJ (Pj(t—uj) v — zbn) dt

J

(w41 — u ) 1
= P (g — ) - @(l‘?ﬂ —u3)
(2 — u;)° L 3 3

(14) - pjf—'—vj(xj_uj)_@(xj_uj) ;
where p; = it

J j—1

Let

15 1= J+1J> ,i>0
(15) mo = ()

From here it is easy to see that
G120, 0<n41 < 1.

Theorem 3.2. If conditions (1) — (5) are satisfied, then (;, nk, j,k > 1 are independent
random variables, and
dis dis
G=Co, M=o
Proof. Similar to the proof of Theorem 3.1, if A, (-) is replaced with A(-), then & =
A (6;) = . From this and from assertions c) and ¢) of Theorem 2.1 for all ¢ > 1, the
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joint conventional density ¢; and 7;, under conditions ¢;_; and 1;_; is e¢. Therefore, to
prove Theorem 3.2, it suffices to show that the Jacobian of the change of variables

(2741 — uy)? 1
e (e — ) — W(SC?H — uj)—

- (m% + (s — uy) — g (2] - uf)) ;
2
Ujar1 — Uj
Mj+1 = <H> )
Tj+1 — Uy
j > 0. Here, it is easy to verify that (j;1 >0, 0 <741 <1
On the other hand, we have

Opjrr _ _ vi—v;  Opipn 1

Gi+1 = Pj+1

8Uj+1 o (Uj+1 - ’ll,j)2’ a’l)j+1 o Uj41 — Uy )
Making a change of variables in the form (14), (15) and taking into account that x4 is
the solution to the following equation

2
x
(16) pivi(e —ug) +v5 = o -
n
we obtain
9Gj+1 vir1 — v (@41 — 5)° T\ i
=- : + [ pjaa (@i —uy) + v — :
au]qu (ujJrl — u]‘)2 2 It ( It J) J an 8uj+1
v =Y (@ — )’
(wjr1 — uy)? 2 7
9Gj+1 1 (w541 — uy)? ol Omja
e . + . . — . + P o
Bt Uy — 5 Pi+1(Tjr1 — uj) +vj 2, D0j 11
_ (@41 —uy)?
2(/U/j+1 — Uj) ’
i1 _ 2w —wy) 1 2w — ) Owj
8uj+1 Tjt1 — Uy Tj41 — Uy ($j+1 - Uj)g 8uj+1 ’
37}j+1 _ 72(’&]'_’_1 — ’LL]')Q ) (9£Cj+1
8’1)j+1 (.’L‘j+1 — Uj)?’ aij ’

From here follows the Jacobians transformation
(17) J = OGi+1 Oj1 _ OGer Ojwr

Vj41 — Uy . 8mj+1 + Uj41 — Uj ) aijrl
Oujir Ovjpr  Ovjpr Oujp Tiv1—uj Ovjpr  xjpn —uy Oujpy

It is easy to verify that the solution to the equation has the following form:

2
Pib
Tjy1 = pj+1bn + 4|20, (Uj — pipruj + =% n)

2
then
833j+1 _ a$j+1 ] 8pj+1 - _b. . Tj41 — Uy ) Vjt1 — V5
Qujtr  Opjy1 Oujp U 2nsin (i —ug)?
8%—“ - 8!Ej+1 ) (r“)pj+1 — b . Tj41 — Uy 1

= n : ’
Qvjr1  Opjy1 Ovja V20nsj41 Uil — Uy

2
where sj11 = v; — pjy1u; + ’J”leL From this and from (16), (15) we obtain |J| = 1.
The theorem is proven.
(]
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