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B. I. KOPYTKO AND M. I. PORTENKO

SIX LESSONS ON THE THEORY OF DIFFUSION PROCESSES

The itinerary from the notion of a diffusion process to that of a generalized diffusion
process is split into six lessons. Numerous exercises throughout its extent make this
minicourse look like a collection of etudes for those ones who are interested in the
theory of diffusion processes.

Introduction.

In response to the request of editorial board of this journal, we present our minicourse
on the theory of diffusion processes consisting of six lessons. Being quite conscious of
impossibility to squeeze any considerable part of that theory into the framework of so few
lessons, we still venture on publishing some synopsis of the minicourse with the purpose
of showing how does one natural modification in understanding the concept of a diffusion
process result in an essential extension of the original set of diffusion processes. That
extended set turns out to contain some processes that can be treated as diffusion ones
only in a certain generalized sense. Moreover, generally speaking, such a generalized
diffusion process cannot serve as a mathematical model for describing any dynamical
system evolving under the influence of random factors: some new kind of interpretations
should be proposed.

To clarify our idea in more details, remind that according to Kolmogorov’s definition*®,
a diffusion process in a d-dimensional Euclidean space R? is determined by its local
characteristics, that is, by two functions defined at any instant of time and any point of
R? : one of them is R%valued and is called drift vector; the other one called diffusion
operator takes on its values from the set of all linear operators in R being non-negative
definite. Denote these functions, respectively, by a(t,z) and b(¢, z) for t > 0 and x € R9.

The following result was proved by A.N.Kolmogorov almost 100 years ago (see Lesson
2 below). Let P(s,z,t,dy) for 0 < s <t < T and x € R? be transition probability
of a diffusion process in R? with its local characteristics given by continuous functions
(a(t,2))@t.2)epy and (b(t, %)) (1,2)e Dy, Where the notation Dy = {(t,z) : t € [0,T],z € R}
is used for T' > 0. Suppose that a real-valued continuous bounded function (p(z)) ecra is
given such that the function

u(s,x) = /Rd o(y)P(s,z,t,dy), s €[0,t), x € RY, (1)

for fixed t € (0,7 is twice continuously differentiable in the argument x. Then this
function is differentiable in s as well and it satisfies the equation

ug(s, ) + (a(s, z), uy (s, 7)) + %T‘f(b(&w)u;'m(s’w)) =0 (2)

in the domain (s,z) € [0,¢) x R%; by the same token the final (in opposite to initial)

condition
u(t—, ) = p(x), € RY, (3)
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is fulfilled.

Equation (2) is called the Kolmogorov backward equation. One of the consequences
of it is the following interpretation of a diffusion process.

If it so happens that b(¢,z) = 0, then the corresponding diffusion process is nothing
else but a dynamical system (maybe, not unique) that is generated by the vector field
(a(t,))(t,2)eD, - In the general cases (b(t,x) # 0), our process can be treated as the result
of perturbing the dynamical system mentioned above by some random factors generated
by the operator field (b(t,z))t.2)eDr -

The development of methods for constructing a process from given R?-valued func-
tion (a(t,z))(t.«)ep, and operator-valued function (b(t,z))(t.«)ep, is one of the most
important problems in the theory of diffusion processes. Some classical results of the
kind are formulated in Lesson 3. The so-called parametrix method for constructing
the fundamental solution of equation (2) together with the maximum principle for that
equation allow one to obtain transition probability density of the diffusion process de-
sired. This construction can be fulfilled under the following assumptions on the given
functions a and b : they are bounded and smooth enough and besides, the function b
is supposed to be uniformly nonsingular (see Lesson 3). Suppose that given functions:
Ré-valued (a(s,%))(s,z)eDy and operator-valued (b(s, x)) s z)ep, satisfy these conditions
and let g(s,7,t,9),0 < s <t < T,z € RY y € RY be transition probability density of
the diffusion process in R? whose local characteristics are given by those functions. In
other words, ¢ is the fundamental solution of equation (2). Denote by go(s,z,t,y) for
0<s<t<T,zecR and y € R? the fundamental solution of the equation

(s, ) 5 Tr(b(s, 2)oll (5, )) = 0. (4)

The assertions presented in Lesson 3 allow one to arrive at the following relations between
the functions g and gg

t
g(s,x,t,y) :go(sam7t7y)+/ dT/ go(S,x,T,Z)(G(T,Z),VZQ(T,Z,t,y))dZ7
s R4
(5)
t
9(3,%15711/) :go(sax7t7y)+/ dT/ g(8,$77',Z)(CL(’T,Z),vzg()(’7'727t,y))d2
s R4

valid for 0 < s <t < T, z € R? andyERd.

These relations are known in mathematics as perturbation formulae. They inspire one
more point of view on the diffusion process whose local characteristics are given by the
functions a and b. Such a process is the result of perturbing the diffusion process with
the local characteristics ag and b (the function ag is defined by the identity ag(t,z) = 0)
by the vector field (a(t,)),2)eDy -

We can now formulate the modification in understanding the notion of a diffusion
process that was mentioned in the first paragraph of this introduction. In Kolmogorov’s
definition, the local characteristics of a diffusion process are determined as the pointwise
limits as As | 0, of the following expressions (“pointwise” means the existence of the
limits for any s € [0,T) and x € R?)

i/ (y — x)P(s,x,s + As,dy) and L (y —z,0)*P(s,z,s + As, dy),
As Jp. () As Jp.(z)

where 0 € RY, B.(z) ={y € R%: |y — 2| <&} for z € R? and ¢ > 0 (# and ¢ are fixed)
and P(s,x,t,dy) for 0 < s <t <T, x € R? is the designation for transition probability
of the process under considerations; the first limit determines the drift vector a(s, z) and
the second one determines the form (b(s, )6, 6).
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In our modified definition, those limits are supposed to exist in the following sense:
the limits

" 1

&%10/0 /Rd (s, x) [E /Bs(z)(y —z)P(s,z,s + As, dy)} dsdzx, (6)
(" 1 )
ilsrilo/o /Rd (s, x) {A—S /BE(I)(y —2,0)°P(s,z, 5+ As, dy)} dsdzx, (7)

exist for any continuous compactly supported in (0, 7) x R? function ¢ (f € R¢ and e > 0
are fixed). In other words, the existence of local characteristics of a Markov process is
now supposed in a weak sense. It is natural to call generalized diffusion a Markov process
in R? whose local characteristics exist in this weak sense.

In Lessons 4-6, we show how to construct a generalized diffusion process in R? such
that its diffusion operator is given by a regular function (b(t,)) »)ep, and its drift
vector is given by a function (a(t,z)),z)ep, from the class L, for some p being large
enough (Lesson 4) or (Lessons 5-6) from the class of generalized functions of the form
(N(2)85())yera, where S is a given hypersurface in R%, (N(x)).cs is a given vector field
and (Jg()),cra is a generalized function on R? acting on a test function (¢ (z))gcre ac-
cording to the rule (dg, ¢)) = |, s ¥(z)do (in fact, some “generalization” of this generalized
function is needed). The main devices for constructing processes of the kind are pertur-
bation formulae (5).

As the reader can see, there is no dynamical system in R? generated by the vector field
(a(t,))(t,z)ep, considered in Lessons 5-6. We propose to interpret the corresponding
generalized diffusion process as a diffusion one in a medium where some membranes
are located on given hypersurfaces. It is a very interesting problem to investigate the
behaviour of such a diffusion process near the membrane. Some results of the kind can
be found in our recent publication (see [11]).

If we now add to what have been said before, that Lesson 1 contains some kind of
concise introduction to the theory of Markov processes, then the reader must be able to
realize the contents of our minicourse on the whole.

The exposition of the underlying ideas in the theory of diffusion processes was our goal
in preparing this minicourse for publishing and “from diffusion to generalized diffusion”
was our motto. Many details are hidden in exercises proposed for reader’s thinking them
over. In fact, several steps in proving the main assertions of Lessons 4-6 are presented
as exercises provided with some hints. We are sure, those readers are able to cope with
the exercises who have mastered the technique of the theory of heat potentials or even
better, the technique of the parametrix method for constructing a fundamental solution
to equation (2). Summarizing and resorting to terms of music, we can say that our
minicourse is a collection of etudes for those readers who are interested in the theory of
diffusion processes.

Acknowledgement. We are truly grateful to N.F.Riabova for helping us prepare our
working materials for publication.

Lesson 1. Markov processes.
1.1. Definition. Let the following objects be given:

e A measurable space (£, F); any point w € Q is interpreted as an elementary
event; F is some o-algebra of subsets of €0, any A € F is called an event.

e One more measurable space (X, B) that is interpreted as the phase space; it is
assumed that any single-point set is measurable, that is {z} € B for all x € X.
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o A two-parametric family (M7)s<; of o-algebras of events such that MZ C M3
if 0 <s <o <7<t for fixed s > 0, the minimal o-algebra of events containing
all the o-algebras M7 for ¢t > s will be denoted by M?.
e An X-valued function (x(t, w));>0,wecq possessing the property: {w € Q: z(t,w) €
I'} is an event from M} for all ¢ > 0 and I' € B; as a rule, the second argu-
ment of this function will be omitted and the event above will be written briefly
{z(t) € T'}; the minimal o-algebra of events containing all the events of the kind
{z(r) € T},r € [s,t],T € B is denoted by N}; it is clear that N7 C M; for all
0 < s < t; the notation N’ for s > 0 will be used for the minimal o-algebra of
events containing N for all ¢ € [s, +00).
e For any pair of s > 0 and # € X, a probability measure P, , on the o-algebra
M.
Suppose that the following conditions are fulfilled:
(1) Pso({z(s) =2}) =1for all s >0 and z € X;
(ii) for fixed s > 0, ¢ > s and I' € B, the function (Ps,({z(t) € T'}))zex is B-
measurable;
(iii) the equality Py, ({z(t) € I'}/M3) = P, ,-)({z(t) € I'}) holds true P; ,-almost
surely forall 0 < s<7<t, z € X and T € B.
Then we say that a Markov process is given and denote it by (z(t), M3, Py 5).
Sometimes we will say briefly: a Markov process (x(t));>0 is given in the phase space
(X, B). The function in (ii) will be denoted by P(s,z,t,T') for 0 < s < t,x € X and
I' € B, that is P, ,({z(t) € T'}) = P(s,x,t,I'); it is called transition probability of the
Markov process (z(t), M$,Ps ;). As a function of the fourth argument it is a probability
measure on (X, B). Moreover, the property (iii) implies the following equality

P(s, 2.7 = / P(r,2,t,T)P(s,x,7,dz) (1)
X

valid for all 0 < s < 7 < t, * € X and I'" € B. This equality is called the Kolmogorov—
Chapman equation.

The values of the measure P, , on N are completely determined by transition prob-
ability of the process. It is true for events of the kind (;_,{z(tx) € 'y} with an integer
n > 1, instants of time s < t; < ... < t, and sets I'y,I's,..., T, from B, since by
induction on n, one can easily arrive at the equality

Poo((){z(ts) € Tk}) =

k=1

= P<57x7t1adyl) P(tlayl;t2ady2)"'/ P(tnflaynflatn;dyn)-
T, 1) 1%

Now, it is an easy exercise to verify that the equality
]P)s,:l; (A/Mf—) = Pr,w(r)(A)

is held true P, ,-almost surely for all 0 < s < 7 and A € N7. Let E;, be the sym-
bol for the expectation operator with respect to P; .. Then the previous equality im-
plies the following one E, ,(§{/M3) = E, () (&) valid P ,-almost surely for all bounded
NT-measurable random variables ¢. If additionally an M?-measurable bounded random
variable 7 is given, we can assert that the equality

Es o (577) =Es. (UET,x(T)(f)) (2)

holds true. This formula is useful.
As we have just seen, the measure P, , on N is determined by transition probability
of the process. Suppose now that we have managed to solve the Kolmogorov—Chapman
equation written for a given measurable space (X, B) and ask ourselves whether there
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exists a Markov process in that space such that its transition probability coincides with
that solution. The answer is positive if X is a complete separable metric space and B is
the o-algebra of all Borel measurable subsets of X. The proof of this statement is based
on the well-known Kolmogorov theorem on consistent finite-dimensional distributions.

1.2. Continuity conditions. T'wo Markov processes in the same phase space (given,
maybe, on different spaces of elementary events) are called stochastically equivalent if
they have the same transition probability. So, any solution to the Kolmogorov—Chapman
equation generates (if any) a class of stochastically equivalent Markov processes. It is
natural to look for such a process in that class whose trajectories (that is, the functions
z(-,w) for w € ) share as nice properties as possible. In the following statement, some
condition imposed on transition probability of a Markov process in a complete metric
space turns out to provide the existence of a stochastically equivalent process whose
trajectories are continuous functions.

For a metric space X, we denote by B,(z) (r > 0 and € X) an open ball in X of
radius r and its center located at x; B, (x)¢ means the complement of B, (z).

Theorem. Any Markov process in a complete metric space (X, B) whose transition
probability satisfies the condition

sup sup P(s,z,t, B-(x)) = o(h), as h ] 0,
0<s<t<s+h<T zcX

for all fited € > 0 and T > 0 is stochastically equivalent to a Markov process with its
trajectories being continuous functions.

A Markov process in a metric space (X, B) with continuous trajectories will be called
continuous. For such a process it is natural to choose the space C([0,400), X) of all
X-valued continuous functions defined on [0,400) as the space of elementary events, so
that w = (w(s))s>0. The function (z(¢,w))i>0weq is defined by z(t,w) = w(t); the o-
algebra M7 for 0 < s <t < oo coincides with the minimal o-algebra of events containing
any set of the kind {w(:) : w(r) € T} with r € [s,t] and T € B; for s > 0, we have
M* = \,s , M;; for s > 0 and € X, the measure P;, on M? is induced by the
corresponding one of a given continuous Markov process in (X, B).

1.3. Homogeneous Markov processes. A Markov process (z(t), M$,P, ) in a
phase space (X, B) is called homogeneous if its transition probability P(s,z,t,T), s <
t,x € X and I' € B, possesses the following property: for all ¢t > 0,z € X and I' € B,
the function (P(s,z,s +t,I'))s>o does not depend on s. If it is so, we put P(t,z,T") =
P(s,z,s+t, ') fort >0, z € X and I’ € B. This function satisfies the following conditions
(Ip(z) for z € X and T" € B is the notation for an indicator function):

e P(0,z,T) =1Up(x) for z € X and T € B;

e for fixed t > 0 and T" € B, the function (P(¢,z,T)),ecx is B-measurable;

e for fixed t > 0 and x € X, the function (P(¢,z,T"))reg is a probability measure
on (X, B);

for fixed s > 0,t > 0,2 € X and I € B, the equality

Ps + t,2,T) = /X P(s,.dy)P(t.y.T) (19)

holds true (this is a homogeneous version of the Kolmogorov—Chapman equa-
tion).

For a homogeneous process, there is no sense in fixing any initial instant of time in
the measure P, , : by a shift, it can always be chosen being equal to 0. For example, for
0<s<t, xeXand I € B, we have

Ps,w({x(t) € F}’) = PO,I({x(t - S) € F}) = P(t - s,x,F).
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fo0<s<ti<ta<...<tp,zeX, I'heB,...,I', €5, then

Poo((){z(ts) € Ti}) =

k=1

:/ P(t1—37$,dy1)/ P(t2_t17y17dy2)---/ P(t, —tn-1,Yn—1,dyn) =
' T Ty

= Po.([{z(tr — s) € T&}).
k=1

For a homogeneous Markov process (z(t), M;,Ps ;) in (X, B), we put P,(-) =P ,(-)
for x € X and M; = /\/l? for t > 0. Then the following conditions are fulfilled:

(1% P,({z(0)==x})=1forz € X;

(ii%) for fixed ¢t > 0 and I' € B, the function P(t,z,I') = P,({z(t) € T}),z € X, is a
B-measurable one;

(iii%) forallt >0, s >0, z € X and ' € B, the relation

P,({z(s +t) € [}/M,) = P(s,z(t),T)

holds true P -almost surely.

The notation (x(t), My, P,) will be used for a homogeneous Markov process.

1.4. Examples and exercises. In any example below, a certain function g(t, z,y),t >
0,z € X and y € X, is defined for X being either a d-dimensional Euclidean space R? or
some part of it with the o-algebra B of all Borel measurable subsets of X. The following
problem is proposed to the reader: make sure that the function P(t,z,I") defined for
t >0,z € X and I" € B by the Lebesgue integral

P@%F%=/gwwwﬂy
I

can serve as transition probability of a homogeneous continuous Markov process in X.
The function g is then called transition probability density of the process.
1.4.A. For t > 0,2 € R? and y € R?, we put

go(t,z,y) = (2mt) /% exp{—|y — =[*/2t}.
A homogeneous continuous Markov process in R? generated by this transition probability

density is called Brownian motion or Wiener process.
1.4.B. Let X = [0, +00). We set

g(t,z,y) = (2rt) " 2[exp{—(y — x)*/2t} + exp{—(y + x)*/2t}]
for t > 0,z > 0 and y > 0. A homogeneous continuous Markov process in X with this

transition probability density is called Brownian motion in R! reflected at the origin.
1.4.C. For fixed ¢ € R}, we put

g(t,z,y) = 2nt) " Plexp{—(y —2)*/2t} + gsigny exp{—(ly| + |«])* /2¢}]
for all t > 0,2 € R,y € R! (we believe that sign0 = 0). This function is discontinuous
(if ¢ # 0) at the point y = 0 : we have g(¢,z,0+) = \}%exp{—wg/%} and g(t,z,0) =
\/ﬁ exp{—x?/2t}. Nevertheless it satisfies the Kolmogorov—Chapman equation

o5+ tig) = [ gls.0.2(t 5 0)dz 5> 06> 0.0 € Ry e R
R

as well as the relation
/ g(t,z,y)dy =1, t >0,z € R™.

R1
It remains to observe that all the values of the function g are non-negative iff ¢ € [—1, 1]
and that the continuity condition is fulfilled in this case. Hence, for each g € [—1, 1] there
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exists a continuous homogeneous Markov process in R! whose transition probability
density is given by the function g. If ¢ = 0, we have one-dimensional Brownian motion.
Any process for ¢ € [-1,1] \ {0} is called skew Brownian motion.

1.4.D. For a fixed unit vector v € R? (d > 2 in this example), we set S = {z € R? :
(z,v) = 0}. Let a continuous bounded function (¢(z)),cs taking on its values from the
interval [—1, 1] be given. Making use of the function gy from 1.4.A, we define a function
g of the arguments ¢ > 0, € R? and y € R? by setting

¢ Ogo(t — T, 2,
g(t,z,y) =go(t7x,y)+/ dT/go(T,%Z)—QO( 5 ne y)q(Z)doz,
0 s Vz

where the inner integral on the right-hand side is a surface integral (since S is a (d — 1)-
dimensional subspace of R?, that integral is nothing else but the Lebesgue integral in
RI~1) and 8% means the derivative of the function (go(t — 7, 2,9)).cgre (for fixed 7 < ¢

and y € R?) in the direction v, that is

Ago(t — —
9o T,z,y):(y Z’y)go(t—T,z,y),O§T<t, ze R yeRe
ov, t—1

Tt is clear that g(t,z,y) = go(t,x,y) for y € S. In the case of y ¢ S, the integrals in the
formula for g are well-defined as follows from the relations (we use the designations ||g|| for
sup,cg |¢(x)| and 7 for the orthogonal projection of x € R? on S, that is T = z —v(z, v)):

! 0 t— ) <
/ dr/go(T,x,z)‘MMq(zﬂdaz <
0 S Vz

! |(y, v)| exp{—(z, V)2/2T — (v, V)2/2(t -7}
<lal [ e o
et vl L WL L I
s (2rn)@=D22n(t — 7))[@-D/2 :
.y HGXP{—(|(JJ’V)| + (y,v))?/2t} exp{—|y — 7|?/2t}
- V2t 2rt)d-D/z =
exp{—|y — z|*/2t}
(27t)d/2

<lqll = |lallgo(t, z,y).

Similar reasons show that

! 0 t— ) %y
| ar [ oot 22T o, > —algo(s.).
0 s V2

Therefore, for all t > 0, € R? and y € R%, the inequalities

hold true. So, the values of the function g are non-negative because of ||g|| < 1.

Now, the reader should prove that the function g satisfies the Kolmogorov—Chapman
equation and verify that the continuity condition is fulfilled. So, there exists a continuous
homogeneous Markov process in R? whose transition probability density is given by the
function g. This process is called Brownian motion with a membrane located on the
hyperplane S; the function (¢(z)).ecs is called the permeability coefficient.

1.4.E. Let X =[0,+00). For t >0, p € X and r € X, we set

glt.p.r) = T exp{ (0" + ) /20 o (pr/1),

where (Ip(2)).ert is a modified Bessel function of zero order, that is

o0
z

To(2) = 3G/ nl)

n=0
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A continuous homogeneous Markov process in X with the function g as its transition
probability density is a representative of the whole class of processes that are called
Besselean.

1.5. Comments and references. We keep to Dynkin’s point of view on the notion
of a Markov process (see [1]), according to which neither an initial instant of time, nor
initial location of the process is fixed. On the contrary, every instant of time and every
point of the phase space can serve as initial data for the process in usual sense. So,
a whole class of Markov processes in usual sense is determined by the Definition 1.1.
Everything concerning the distribution of such a process is completely determined by
the corresponding transition probability.

The continuity condition was established by E.B.Dynkin [2] and independently by
J.R.Kinney [3].
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Lesson 2. Diffusion processes.

2.1. Introduction. In this lesson, the phase space of Markov processes will be a
d-dimensional Euclidean space R? with the o-algebra B of all Borel measurable subsets
of R%. Every Markov process in this space is generated by a certain solution to the
Kolmogorov—Chapman equation, that is, such a function P(s,z,t,T') of the arguments
s>0, 2 € R t>sand I' € B that possesses the following properties:

1) it is a B-measurable function of x € R? for fixed s < t and ' € B3;

2) it is a probability measure of I' € B for fixed s < t and x € R%;

3) the equality P(s,z,t,I') = fRd P(r,y,t,T)P(s,z,7,dy) holds true for all 0 < s <
r<t,z€RYand I € B.

The equality in 3) is called the Kolmogorov—Chapman equation. It expresses a general
principle, according to which stochastic systems with the Markov property are evolving
in time. The equation is non-linear, and it is a problem how to describe these and those
classes of its solutions.

At the end of 1920s, A.N.Kolmogorov noticed that some assumptions on the behav-
ior of the process desired on small intervals of time makes it possible to reduce the
Kolmogorov—Chapman equation to a certain linear problem. He managed to point out
several classes of Markov processes. One of them became later to be called diffusion
processes.

2.2. Definition. Recall that an open ball in R? of radius » > 0 with its center located
at the point # € R¢ is denoted by B,.(z); its complement to R? is designated by B,.(z)°.

Let P(s,z,t,I), 0 < s < t, x € R4 T € B, be a solution to the Kolmogorov—
Chapman equation. We say that this solution is transition probability of a diffusion
process in (R%, B) if the following conditions are fulfilled:

A) for all s >0, x € R? and ¢ > 0 the relation

1
lim / P(s,z,t,dy) =0
tls t — s B.(z)¢

holds;
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B) for all s > 0, z € R? and some ¢ > 0 the limit

1
lim —x)P(s,x,t,d
Ty AURE LAY

exists;
C) for all s >0, € RY, § € R? and some ¢ > 0 the limit

1
lim —,0)2P(s,z,t,d
m it 0P

exists.

One can easily observe that under the condition A), the existence of the limits in the
conditions B) and C) for some £ > 0 implies their existence for any € > 0, and the fact
that those limits do not depend on ¢. So, the limit in B) determines an R%-valued function
a(s,z), s >0, x € R while the limit in C) determines a linear operator b(s,z), s >
0,z € R?, for which that limit can be written as the quadratic form (b(s, x)0, ), 6 € R%;
it is clear that this form is non-negative definite. The function a(s,z), s >0, x € R?, is
called drift vector and the function b(s,z),s > 0,2 € R? is called diffusion operator and
they all together are called local characteristics of the corresponding diffusion process.

This terminology is connected with the fact that diffusion processes are intended to
serve as a mathematical model for describing the motion of a diffusing particle suspended
in a liquid or a gas. Such a particle takes part in the motions of two kinds. One of them
is caused by some streams in the liquid or winds in the gas. The local velocity of this
macroscopic motion is given by the drift vector. The other kind of motion is microscopic.
It is the result of collisions between our particle and molecules of the liquid or gas. The
diffusion operator characterizes locally the intensity of that molecular motion in different
directions.

The integrals in the conditions B) and C) are taken over the balls because any moments
of the process a priory do not suppose to exist. But if those moments do exist, then the
corresponding integrals can be taken over the whole R?. In that case, the following
conditions are more convenient to be checked in order to verify that a given transition
probability determines some diffusion process.

Transition probability P(s,z,t,dy), 0 < s < t, x € R? generates a diffusion process
if the following conditions are fulfilled:

A’) for some § > 0 and all s > 0, = € R?, the relation

lim
tls t — S

/ |y—$|2+6p(8,$7t7dy) =0
Rd

holds true;
B') for all s >0 and = € R?, the limit
li —z)P t,d
. /Rd(y z)P(s, ,t,dy)

exists;
C’) for all s > 0, x € R% and 0 € R?, the limit

1 )
1gg1t_84d(y—x,9) P(s,z,t,dy)

exists.

It is evident that the limits in B’) and C') coincide with a(s,z) and (b(s,x)0,8),
respectively.

2.3. Kolmogorov’s backward and forward equations. Let transition probability
P(s,z,t,dy), 0 < s <t, x € R% satisfying the conditions A)-C) be given. We first prove
the following auxiliary result.
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Proposition. If (f(x)),egra is an arbitrary bounded twice continuously differentiable
function with real values, then for all s > 0 and x € R?, the equality

[ [ f@)P(s,.tdy) = £@)] = (as,0), /(@) + 5 Te(b(s, )£ (@) (1)
s S Rd

holds true.
Proof. The boundedness of the function (f(z)),ecre and the condition A) imply the
fact that the left-hand side of (1) is equal to the expression

/ F@) — F@)]P(s, 2. t.dy)
B.(x)

lim
tls t — s

for all ¢ > 0. Applying now Taylor’s formula and making use of the conditions B) and
C), we arrive at the conclusion that this expression can be written as follows

(als,2), /(@) + 5 Te(bls, 2) 1" (2) + R,

where absolute value of R, for € > 0 can be estimated by the expression

/ ly — 2 P(s, 2., dy) =
B.(z)

1 1 " .
— su z) — z)|| im
3 o 1776 = 1)

=L s 1) - @) (s 2)

(we have used here the operator norm of the gessian f”(-)). Since the function (f”(x)),cpa
is continuous, we have

— 1
- <= . 3 1" e -0.
lim [Re| < 2Tr(b(s7x))ggr(1)zeb§§$) 1f"(z) = f* (@)l =0

This completes the proof.

Theorem 1. Suppose that a given transition probability P(s,z,t,dy), = € R? 0 <
s < t, corresponds to a diffusion process with its drift vector and diffusion operator being
continuous functions. Let (p(x))yera be such a bounded continuous function with real
values that the function u(s,z) of the arguments (s,x) € [0,t) x R? (for fired t > 0)
defined by

u(s, ) = /Rd (y)P(s,z,t,dy)

is twice differentiable with respect to the argument x € R? continuously with respect to the
pair (s,xz). Then this function is also differentiable with respect to s € [0,t) and satisfies
the equation

(s, ) + (a(s, z), uy(s,2)) + %Tr(b(s,ff)ugm(svﬂf)) =0 (2)
in the domain (s,z) € [0,t) x R? and also the final condition
limu(s, ) = o(2) ®)

for all z € R? is fulfilled.
Proof. Let s € [0,¢) and As > 0 be such that s+ As < ¢t. Then using the Kolmogorov—
Chapman equation, we can write down the equality

L[u(s, x) —u(s+ As,x)] = _a / [u(s + As, z) — u(s + As, x)|P(s, z, s + As,dz).
As As Jra

Applying the proposition to the function (u(s+ As, z)),cre leads us to the equation (2).
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Notice now that for z € R? and any ¢ > 0, we have

lim [u(s, ) — ¢(z)| < lim lo(y) = p(@)|P(s,2,t,dy) < sup |o(y) — @(x)].
STt sTt J B, (z) yEBe ()
The last quantity converges to 0, as € | 0 for fixed € R%. The theorem has been proved.

Equation (2) is called Kolmogorov’s backward equation. It is a linear second order
partial differential equation of parabolic type (for fixed s > 0 and = € R¢, the operator
b(s,x) is non-negative definite). We have thus seen that the assumption on the process to
be a diffusion one plus some additional conditions allow us to linearize the Kolmogorov—
Chapman equation.

Let an orthonormal basis in R¢ be fixed. Denote by 27 for j € {1,2,...,d} the coor-
dinates of x € R? in that basis. The matrix of the operator b(s, ) in that basis consists
of the entries denoted by bjx(s,z) for j, k € {1,2,...,d}. The Kolmogorov backward
equation in coordinates form is written as follows

ou d ou 1 <& 0%u
.5 0) + Yl (s,2) 5 (s,0) + 5 D bjk(s,) 5 s (s,0) = 0. (2))
j=1 jik=1

Suppose now that transition probability of a diffusion process is absolutely continuous
with respect to Lebesgue measure in R, that is

P(S,J;,t,F):/G(s,x,t,y)dy, 0<s<t zecR% I'eB.
r

The function G is called transition probability density of the process. It turns out
that under some conditions, the function G(s,z,t,y) as a function of the arguments
t € (s,4+00) and y € R? (for fixed s > 0 and = € R?) satisfies some partial differential
equation that is formally conjugate to equation (2').

Theorem 2. Suppose that transition probability density G(s,z,t,y), 0 < s < t,x € R?
and y € R, of a diffusion process is such that the limits in conditions B) and C) exist
locally uniformly with respect to x € R® and let the following derivatives exist and be
continuous in (t,y) € (s, +00) x R?

OG(s,,t,y)  O(d (t,y)G(s, 2, t,y))  O*(bj(t,y)G(s, 2, t,y))
ot ’ OyJ ’ OyI Oy*
for all j and k from the set {1,2,...,d}. Then for fived s > 0 and x € R%, the function
G(s,z,t,9y), (t,y) € (s,+00) x R, satisfies the following equation

9G(s.x.ty) | zd: A (ty)G(s, . t,y) 1 Zd: 9 (b1 (t, )G (5,2, 1, 9))

: —
ot = 0yJ 2 oy 0yIdy

=0. (4)

Proof. Let (¢(z)),cre be a real-valued compactly supported and twice continuously
differentiable function. We have

8G(S,Jf,t,y) _
/Rd o(y) 5 dy =

= lim i[/ @(y)G(s,x,t—&—At,y)dy—/ gp(y)G(s,at,y)dy} =

AtLo At R
:m}&/ Gsxty /th,t+At 2)(p(2) — go(y))dz}dy.

Our proposition and the assumptions of Theorem 2 allow us to pass to the limit here.
As a result, we obtain the equality

o ® 0 ay [ Gzttt ) + 5 Tr0 00" 0)dy
R4
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Integrating here by part leads us to equation (4). The theorem has just been proved.

Equation (4) is called Kolmogorov’s forward equation. In the literature closer to
physics, it is called the Fokker—Planck equation.

The results of Kolmogorov described above indicate a path by which one may hope to
solve the problem of the existence of a diffusion process with previously specified its local
characteristics. The main station on this path is the investigation of the Cauchy problem
(2) — (3). In the next lesson some classical results on the existence and uniqueness of a
solution to this Cauchy problem will be formulated.

Remark. All the results formulated above can be obviously reformulated in the case
of a diffusion process being homogeneous.

In particular, the local characteristics of a homogeneous diffusion process (that is, its
drift vector and its diffusion operator) do not depend on time. If P(¢,z, dy),

t > 0,2 € RY, is transition probability of such a process, then under some assumptions on
a given continuous bounded function (¢(x)),erd, the function u(t, z) = [4. ©(y)P(t, z,dy),
t >0, z € R? satisfies the equation

1
u;(tﬂ z) — (a(z), u;(t,x)) D) Tr(b(x)ugz(tvx)) =0 (20)
in the domain (¢,z) € (0, +00) x R? and also the initial condition
I _ 0
im u(t, z) = ¢(z) (3%)

for all z € R? is fulfilled.

2.4. Examples and exercises.

2.4.A. Make sure that Brownian motion in R? (see 1.4.A) is a diffusion process with
a(r) = 0 and b(x) = I, where I is an identity operator in R?. Verify that for any
real-valued continuous bounded function (p(z)),cpa, the function

u(t,x) = /Rd o(W)go(t,z,y)dy, t >0, z € ]Rd,

is a solution of the Cauchy problem (2°)—(3°) (equation (2°) with a(x) =0 and b(x) = I
is called the heat equation).

2.4.B. Let (z(t), M4, P,) be a homogeneous continuous Markov process in R! called
skew Brownian motion (see 1.4.C). Verify that the following equalities

t dr
/Rl (y —x)g(t,z,y)dy = q/o exp{—w2/27}\/%7

dr
2T

/ (v — 2)g(t, 0, y)dy = t — 2z / exp{—a?/2r)
RY 0

are fulfilled for all ¢ > 0 and x € R!. Show that for any x € R!

1

lim — —x)%g(t dy =1
im - Rl(y x)7g(t,x,y)dy = 1,

1
1. — — =
s (y — x)g(t, 2, y)dy = qo(x),

where (§(x))zer: is Dirac’s d-function. This means that skew Brownian motion for ¢ # 0
is not a diffusion process in the sense of definition in Section 2.2, but it can be treated as
a diffusion process in some generalized sense. The same concerns also the next example.

2.4.C. Consider Brownian motion in R? with a membrane on a given hyperplane (see
1.4.D; we use here the notation from there). Prove that for all t > 0,z € R% and 6 € R,
the following relations

| a0ttty = 00) [ i [ . n)atu)do,
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— 1. 0)? T = 2 v t T T T —z o
[ = 02gtta iy =08 +20.0) [ ar [ ao(ra)o - . 00at)de,

are held. Show that these relations imply the following ones

1 2 a2
1532 Rd(y—aﬂ,@) g(t,x,y)dy = |07,

o1
lim — (y - l',a)g(t,l’,y)dy = (V7 0)(_](1’)55(%)7
tl0 t Jra

where (05(x)),era 18 a generalized function whose action on a test function (p(z)),cpra
is given as follows (Jg, @) = [ p(z)do.

2.5. Comments and references. A.N.Kolmogorov in [4] pointed out a class of
Markov processes that became later known as diffusion processes. In that paper, the
backward and forward equations were derived. The first theorems on the existence and
uniqueness were obtained by W.Feller [5]. Since that time many articles and books have
been devoted to the theory of diffusion processes, for example [6], [7], [8], [9], [10].
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Lesson 3. The Kolmogorov backward equation.

3.1. Introduction. The main question our lessons address is: what conditions
must be imposed on given functions (a(s,))(sz)ep, and (b(s,x))(sz)ep, With their
values in R? and £ (R?), respectively, so that these functions can serve as the local
characteristics of a diffusion process in R? (we have just used the notation Dr for the
set [0,7] x R? and £+ (R?) for the set of all linear symmetric operators on R? being
non-negative definite). Kolmogorov’s results expounded in the previous lesson inspire
us with the ideas of looking for the process desired among solutions of the Cauchy
problem (2)—(3) of Lesson 2. Fortunately, in the theory of partial differential equations
of parabolic type there are some assertions that formulate exact conditions on those
given functions that guarantee the existence of the so-called fundamental solution of the
associated Kolmogorov backward equation. With the help of that solution a classical
solution to the Cauchy problem for that equation can be constructed and it turns out
to be unique in a certain class of functions. All these results allow one to conclude that
there exists a diffusion process in R% whose transition probability density coincides with
the fundamental solution mentioned above. We call such a process classical diffusion. It
is clear that any notion of a generalized (non-classical) solution to the Cauchy problem
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(2)—(3) of Lesson 2 may determine a process that is diffusion only in some generalized
sense. Two examples of such a kind can be found in the previous lessons.

3.2. Fundamental solutions. We are given by an R%-valued function (a(s, z)) s 2)e Dy
and an £ (R%)-valued function (b(s, %)) (s,2)ep,- Fix an orthonormal basis in R? and de-
note by a’(s,x) for j = 1,2,...,d the coordinates of the vector a(s, ) in that basis and
by bjx(s, ) for j and k from the set {1,2,...,d} the entries of the matrix of the operator
b(s, ) in the same basis. Suppose that these functions possess the following properties:

(i) there exist constants ¢; and ¢z, 0 < ¢1 < cg, such that for all § € R? and (s,z) €
Dr, the inequalities

c1]0)? < (b(s,2)6,0) < ca|0]?
are held;

(ii) for all (s,z) € Dr, (t,y) € Dy and integers j and k from the set {1,2,...,d}, the
inequality

b1 (s, 2) = bjne(t:y)| < K(Jy — 2| + |t — 5*/?)
holds true with some constants « € (0,1] and K > 0;

(iii) for all j € {1.2....,d} the function (a’(s,x))(s.)epy i continuous bounded and

satisfies the inequality

@ (s,2) — a’ (s,y)| < Kly —2|* s €[0,T], z € R, y € R™.

Under these conditions, the so-called fundamental solution g(s,z,t,y), 0 < s < t <
T, € R% y € RY, of the equation

2

ou ou
assx—l—Zajsxajsx ijk aaak( x)=0 (1)

jkl

exists, as is formulated in Theorem 1 below. We now define the notion of a fundamental
solution of equation (1).

Definition. A continuous function g¢(s,z,t,y) of the arguments (s,z) € Dr and
(t,y) € Dr for s < t is called a fundamental solution of equation (1) if as a function of
(s, ) for fixed (t,y) it satisfies equation (1) in the domain (s, ) € [0,¢) x R? and for an
arbitrary continuous bounded function (¢(x)),cra, the relation

lim [ g(s,z,t,9)e(y)dy = o(z), © € RY, (2)
sTt JRd

holds true.

Theorem 1. Let an R?-valued function (a(s, x)) (s z)epy and an LT (R?)-valued func-
tion (b(s,x))(s,z)epy e given. Suppose that they satisfy the conditions (i)-(iii). Then
there exists a fundamental solution g(s,z,t,y), 0 < s <t < T, x € RYy € R?, of
equation (1) satisfying the inequality

d+214+m
2

exp{—plL =) )

forall0 <s<t<T, xcR?andy c R? with some positive constants L > 0, u > 0 and
non-negative integers | and m being such that 21 +m < 2; here D! means the derivative
of the order | with respect to the argument s and D' means any partial derivative of the
order m with respect to the argument x.

Remark. The so-called parametrix method for constructing the fundamental solution
in Theorem 1 is used. And it turns out that the constant p in (3) can be arbitrarily chosen
from the interval (0, 5¢/2T"), where s is defined as follows

»= inf min  (b(s,z)716,8).
(s,z)eDr 6€R?,|0|=1

|DLD (s, 2, t,y)| < L(t —5)~
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The conditions of Theorem 1 imply the inequality s > 0. Therefore, if a continuous
real-valued function (¢(x)),era satisfies the inequality

p(x)| < Bexp{Bl|*}, = € RY,
with some constants B > 0 and 8 € (0, »/2T), then the integral

/ o(y)g(s,z,t,y)dy
Rd

exists for all 0 < s < t < T and # € R?% As a function of the arguments (s,z) €
[0,2) x RY, this integral determines a solution to the Cauchy problem (1)—(2). Moreover,
the following estimation

| [ a5,z 0)0(wds] < const-explaaf)
R

holds true for all 0 < s < ¢ < T and = € R? with some constant v > 0 depending only
on », and T.

3.3. The maximum principle. One of the forms of the maximum principle for
the second order partial differential equations of parabolic type is formulated in the next
assertion (the designation DY is used for the set [0,7) x R9).

Theorem 2. Assume that the coefficients of equation (1) are continuous bounded
functions in DY and let the condition

d
Z bjr(s,2)070% >0 (4)
Jk=1
be held for all (s,z) € D% and all real numbers 6*,6%, .. .,0%. Suppose further that a
continuous real-valued function (u(s,x))(s z)ep, Satisfies the following inequalities:
a)
d d
ou . ou 1 0%u
g(&x) + ;a](s7x)@(s,x) + 3 .;1 bjk(s,x)m(s,x) <0, (s,x) € DY;
j= k=
b) u(s,x) > —Bexp{B|z|*}, (s,2) € Dr, with some positive constants B and f3;
c)u(T,z) >0, x € RY
Then u(s,z) > 0 for all (s,x) € Dr.
Corollary. Under the conditions of Theorem 1, the fundamental solution g of equa-
tion (1) takes on only non-negative values.
3.4. The uniqueness theorem. Let continuous functions (f(s,z))(sz)ep, and
(p())pere with real values be given. Fix some ¢ € (0,7] and consider the equality

@(s ac)—l—zd:aj(s x)@(s Jc)—i—1 Zd: bk (s x)ﬂ(s x)=—f(s,z) (5)
T T

k=1
in the domain (s, ) € [0,t) x R? and the final condition

181%1 u(s,x) = ¢(x) (6)

for all # € R%. One of the consequences from the maximum principle is the following
statement on the uniqueness of a solution to the Cauchy problem (5) — (6).

Theorem 3. Assume that the coefficients of equation (5) are continuous bounded
functions in the region D and let inequality (4) be fulfilled for all (s,z) € D and all
real numbers 61,60%, ... 0% Then in the class of functions satisfying the inequality

lu(s, z)| < Bexp{B|z|?}, (s,z) € [0,t] x R%,
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with some positive constants B and (3, there exists no more than one solution to the
Cauchy problem (5) — (6).

Corollary. Under the conditions of Theorem 1, the fundamental solution g satisfies
the relations:

/ 9(37$>t’y)dy:1 (7)
R

forall 0 <s<t<T and z € R%;
/ 9(s,,7,2)g9(7, 2, t,y)dz = g(s,2,t,y) (8)
]Rd

forall0<s<7<t<T, z€R%andyecR?

This corollary together with that of Section 3.3 show that under the conditions of
Theorem 1, the fundamental solution g(s,z,t,y), 0 < s <t < T, z € R4 y € R? is the
transition probability density of a Markov process in R¢. Inequality (3) for I = 0 and
m = 0 allows us assert that the continuity conddition from Lesson 1 is fulfilled for this
process. A question arises, whether this process is diffusion in Kolmogorov’s sense or
not. We will answer this question in the next section.

3.5. Solving the Cauchy problem (5)—(6). AnR%valued function (a(s,z))(s ey
and £ (R%)-valued function (b(s,z))(s+)ep, satisfying the conditions of Theorem 1 are
assumed to be given. As follows from Section 3.2, a solution to the homogeneous Cauchy
problem (5) — (6) (that is, with f(s,x) = 0) in the domain (s,z) € [0,¢) x R? (¢t € (0, T]
is fixed) can be given by the integral

un(sa) = [ gl t)eldy

if a given continuous function (p(z)),cga satisfies the inequality |p(x)| < Bexp{3|z?|}
for all z € R? with some constants B > 0 and 3 € (0, 3¢/2T). It thus remains to find out
a solution to the Cauchy problem (5) — (6) with ¢(x) = 0. Assuming that the function
(f(s,2))(s,2)eD, satisfies the inequality |f(s,z)| < Bexp{p|z?|} with the same constants
as above, consider the integral

ui(s,x) = /t dr /Rd g(s,x,7,2)f(1,2)dz, (s,z) € [0,) x R,

Using inequality (3) for I = 0,m = 0 and [ = 0, m = 1, we can assert that the function
uq (s, IL')(S’I)G'D? is continuous and continuously differentiable with respect to = € R?. As
for the second derivatives with respect to x and the first derivative with respect to s,
their existences can be guaranteed under the following assumption on the function f : for
any = € R? there exists such § > 0 that for all s € [0,T] and y € Bs(x), the inequality

|f(s,y) = f(s,2)] < K|z —y["

holds true with some constants K > 0 and v € (0, 1]. In this case, the following formulae
are fulfilled

Our_ >:/ﬂh 4@i4aanzwvxwa

dzigzh " wa 02902k

8u1
g(s,x) (s, ) / y 8 (s,z,7,2)f(1,2)dz,

as it follows from the equalities

Dsg(s,x,t,y)dy=0and | D;'g(s,z,t,y)dy =0
R4 Rd

form =1 and m = 2.
As a consequence, we have the following assertion.
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Theorem 4. Assume that the coefficients of equation (5) satisfy the conditions of The-
orem 1 and let given real-valued continuous functions (f(s,7))(s.z)epr and (0(T))zera
satisfy the inequalities

|[f(s,2)] < Bexp{Bl|z[*}, |o(2)] < Bexp{plz[*}

for all s € [0,T) and x € R with some positive constants B and (. Suppose, in addition,
that (f(s,7))(s,z)epy 15 locally Hélder continuous in x € R? uniformly with respect to
s € [0.T]. Then a solution to the Cauchy problem (5) — (6) can be written as follows

t
u(sa) = [ glssataloidy+ [ dr [ gls,zmafra)dz, (s0) € DY,
R4 s R4
Moreover, this solution satisfies the inequality
lu(s, z)| < constexp{v|z|*}, (s,2) € Dy,

with some constant v > 0.
Corollary. Under the assumptions of Theorem 1, the following relations are held for
al0<s<t<T,zecR%and 6§ € R*:

| w0t tay= @)+ [ ar [ () 0gs. i ©)

t
| w0Pg(s.atopdy = @07 + [ dr [ @r.00.0)9(s.2.r)dy+
R s R

—|—2/ dT/Rd(a(T,y),G)(y,G)Q(S,m,T,y)dy. (10)

Proof consists in verifying the fact that the expression on the left-hand side of (9) (or
(10)) solves the same Cauchy problem (5)-(6) as the expression on the right-hand side
of (9) (or (10)) does. To verify this is proposed for the reader as an exercise.

One more exercise consists in proving the following relations being simple consequences
of (9) and (10):

/Rd (y —z,0)g(s, z,t,y)dy = /: dr /Rd g(s,z, 7, 2)(a(r,2),0)dz (9)

t
| w=a0Patsatpdy= [ar [ gsar 000,000+

+2/ dr /]Rd g(s,x,7,2)(z — x,0)(a(r, 2), 0)dz. (10")

The final exercise in this lesson consists in proving the following statement.

Theorem 5. Let an R?-valued function (a(s, x))(s.z)epy and an LT (R?)-valued func-
tion (b(s,x))(s,z)eDy be given such that they satisfy the conditions (i)-(iii). Then the
fundamental solution g(s,z,t,y),0 <s <t <T,z € RYyecR? of equation (1) can serve
as transition probability density of a diffusion process in R% whose local characteristics
coincide with those given functions.

3.6. Comments and references. The parametrix method for constructing a fun-
damental solution of equation (1) is expounded in many books and papers, for example,
[1], [13], [14]. The reader can also find there various versions of the maximum principle
for that equation. The theorems of this section are taken mainly from [12].
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Lesson 4. Diffusion processes in irregular media.

4.1. Introduction. Let (z(t));e(0,7] be a classical diffusion process in R? with its
local characteristics being given functions (a(s,))(s,z)ep, and (b(s,z))(s,z)ep, respec-
tively, R%-valued and L£¥(R?)-valued. Suppose that the vector field (a(s,))(s)eny
generates a dynamical system (xo(t))icfo,r] in the following sense: for every s € [0,T’)
and ¢ € R?, we have

Zo(t) = a(t,xzo(t)), t € (s,T], zo(s) =& (1)

In this case, the process (x(t));cjo,r] can be considered as the result of perturbing
the dynamical system (zo(t))¢cjo,r] by some random factors that are described by the
operator-field (b(s,z))(s,«)ep,- Notice that those random factors generate a diffusion
process (£(t))¢ejo,r) in R? whose transition probability density g(s,z,t,y),0 < s <t <
T,z € R? y € RY, is a fundamental solution of the equation

ul(5,2) + 3 Te(b(s, 2l (5,) = 0. 2)

An opposite view-point on the process (x(t)):e[o, 1) consists in considering it as the result
of perturbing the process (£(t))¢cjo,7] by the vector-field (a(s,)) s z)ep,- It turns out
that such a perturbation can be fulfilled for a vector-field that itself does not generate
any dynamical system of the kind (1). This lesson will be devoted to locally unbounded
perturbing vector-fields. In the next one we will see that such a perturbation is possible
even for generalized functions of a certain class.

4.2. Perturbation formulae. We use the notation of Introduction. Suppose that
the Markov processes ((t))¢ejo,r) and (£(t))se(o,7] in R? are classical diffusion. Transition
probability density g(s,,t,9),0 < s <t < T,r € RY y € R? of the process (£(t))eero,m
coincides with the fundamental solution of equation (2). Denote by G(s,z,t,y) for 0 <
s<t<T,zcR?andy € R? transition probability density of the process (x(t))seo,1)-
It coincides with the fundamental solution of the equation

Ul(s, ) + (a(s, x), Uy(s, x)) + %Tr(b(sa @)U, (s, 7)) = 0. 3)

Theorem 4 from the previous lesson implies the following relations between the functions
g and G.
Theorem 1. Forall0<s<t<T,xz € R? and Yy € Rd, the relations

t
Gls,x.t,y) = g(s, 2. 1,y) + / dr / o(s,2,7,2)(a(r, 2), G\ (r, 2, t,y))dz
s Rd

(4)
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t
Gls,a.t,y) = g(s,.1,y) + / dr [ Gs,z,72)(a(r,2),g\(r, 2. t,y))dz
s R4

are held true.

Each one of these equalities can be treated as an equation for the function G if the
function g is known. Of course, if the function (a(s,))sz)ep, satisfies the conditions
of Theorem 1 from the previous lesson, then the function G can be constructed by the
parametrix method for equation (3). But any one of equations (4) can be solved under
the assumptions on the function (a(s,z))(s»)ep, being not so strong.

Equations (4) are known in mathematics as the perturbations formulae. The first one
is an analogy to Kolmogorov’s backward equation, while the second one is analogous to
the Kolmogorov forward equation.

4.3. Diffusion processes with integrable drift vector. We are going to con-
struct a solution to the second one of equations (4) under the following assumptions
on a given £ (R?)-valued function (b(s,z))(ss)ep, and a given Ré%-valued function
(a(s,x))(s,z)ep, : the first one is supposed to satisfy the conditions (i)-(ii) of Lesson
3 and the second one is supposed to be measurable and such that

T » 1/p
lallr = ([ dr [ latrapaz) " < 4o )

for some p > d + 2. We will see that the solution G(s,z,t,y) for 0 <s <t <T, z € R?
and y € R? is continuous and continuously dufferentiable with respect to x, but the
existence of the second derivatives is not guaranteed. So, the function G can be called a
generalized fundamental solution to equation (3) and the corresponding Markov process
turns out to be a diffusion one only in some generalized sense.

The following auxiliary result will be useful in constructing a solution to the second
equation in (4). Its proof is elementary. For fixed T > 0,C > 0,u > 0 and 8 € R,
let Hp(C, i, B8) be the designation for the class of all real-valued continuous functions
h(s,z,t,y) defined for 0 < s <t < T, x € R and y € R? and being such that

[h(s,z,t,y)| < Ot = 5)"7 exp{—ply — z[/(t — 5)}
forall0<s<t<T, x€R?and y € R
Lemma 1. Assume that hy € Hp(Ck, 1, Bi) for k € {1,2} are given functions, where
p>0,Cr >0 and By < 2(d+ 1),k € {1,2}, and let (f(s,2))(sw)enr be a real-valued

function such that
T 1/p
I fllpr = (/ / |f(s,m)|pdsdx) < 400
0o JRrd

for some p > d + 2. Then a function h(s,z,t,y) defined for 0 <s <t <T, z € R% and
y € R? by the integral

t
h(s,x,t,y) = / dr h1(57xa7—aZ)hQ(T7Z7t7y)f(T7 Z)dZ
s Rd

belongs to the class Hy (C| fllp,1, 1, B), where 8 = 1 + B2 — (d + 2)/2q,
1 1
C = LGl ) IB((+2) — b 5(d+2) = aB)]' /%, 4 =p/(=1)

(B(~,8) means Euler’s beta-function).
We now apply the method of successive approximations for solving the second equation
in (4). We put Go(s,z,t,y) = g(s,z,t,y) and for k > 1

t
Gils,2,1,y) = / dr [ Gioi(s, 2.7 2)(a(r,2), Vag(r, 2.t y)d.
s Rd
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Remind that the given functions a and b are assumed to satisfy the conditions formulated
at the very beginning of this section. Using Lemma 1 and induction on k, we arrive at
the following estimation

L(vq+4q/2) }1/‘1 K —a/2 ply — «f?
ME(E— )~/ e { - FEZEE Y (6
[F((k+1)’m+Q/2) (=) P t—s (©)
valid forall 0 < s <t < T, z € R4y € R% and k = 0,1,..., where ¢ = p/(p — 1),y =
(p—d—2)/2p, M = L|all, r[T(v¢q)(=)%?]'/9 and the positive constants y and L are

na
taken from the inequalities (see Theorem 1 in Lesson 3)

g(s,w,t,y) < L(t — s) " exp{—ply — =*/(t — 5)},

IVag(s, 2, t,y)| < L(t—s)~ D2 exp{—ply — 2|*/(t — s)}.

As a consequence of these calculations we have the following statement.

Theorem 2. If a given R*-valued function (a(s,))(sz)ep, is measurable and sat-
isfies inequality (5) for some number p > d + 2 and a given LT (R%)-valued function
(b(s,))(s,0)eDy satisfies the conditions (i) — (i) of Lesson 3, then the second equation
in (4) has a solution

|Gk(87xatvy)‘ < L

G(Saxatay) :ZGk(Sazvtvy) (7)
k=0

that belongs to the class Hp (N, p, g) with some constants N > 0 and p > 0. Moreover,
i that class the solution constructed is unique.

Remark. As for the first equation in (4), it should be first transformed into an
integral equation for the function G/, (s,z,t,y), 0 < s <t <T, x € R? and y € R? and
then be solved by the method of successive approximations in a way similar to that for
proving Theorem 2. After that the function G, constructed as the sum of a series like
(7) should be substituted into the first equation in (4) in order to obtain the solution of
it.

Exercise 4.3.A. Make sure that the solution of each equation in (4) coincides with
the solution of the other one.

We now have to answer the following questions:

(a) is it true or not that the function G in Theorem 2 can serve as transition probability
density of a Markov process in R? ?

(b) if “yes”, is that process a diffusion one in the sense of Kolmogorov?

To answer these questions, we show that the solution G of each one of equation (4)
can be approximated with classical fundamental solutions of equation (3).

For fixed p > d +2, let 2, be a class of functions (a(s, z))(s,z)ep, With their values in
R? such that SUPgeq, llallp,r < 0o. For k € {1,2}, let a), be a function from 2,. Denote
by Gy, for k € {1,2} the solution of each one of equations (4) constructed in Theorem 2
for the function ax, k =1, 2.

Lemma 2. The function G1(s,z,t,y) — Ga(s,z,t,y), 0<s<t<T, x € Ry cR?
belongs to the class Hp(Cllay — as|lpr, 1, ¢ — ), where the constant C' depends only on
T,d,p, pn and sup,eq, llallp,r, the constant v = p}‘ijz is as above and the constant u is
such as in Theorem 1 of Lesson 3.

Fix a number p > d + 2 and let an R%valued function (a(s,z))(s s ep, be such that
llallp,r < +o0. Some sequence of functions (an(s,z))szep, » = 1,2,..., can be chosen
such that

a) sup,sq |lanllpr < 00; B) lla — anllpr = 0, as n — oo; ) for fixed n > 1,
the function a,, satisfies the condition (iii) of Lesson 3. Denote by G(s,z,t,y) and
Gn(s,z,t,y)for0<s<t<T, z€R yecRYandn = 1,2,... the functions constructed
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in Theorem 2 for the functions a and a,,, respectively. In accordance with Lemma 2, we
have the inequality

ly — x|

}

valid foralln > 1,0 < s <t < T, z € R% and y € R4, where C is some positive
constant. Taking into account that G, is transition probability density of a classical
diffusion process, we arrive at the following statement.

Theorem 3. Let the conditions of Theorem 2 be fulfilled. Then the function G(s,x,t,y),
0<s<t<T, rcRycRe defined by (7) can serve as transition probability density
of a continuous Markov process in R? satisfying the following equalities

/Rd(y —z,0)G(s,x,t,y)dy :/s dT/Rd(a(T, y),0)G(s,z,7,y)dy, (8)

_d
|G(S,£I,'7t, y) - Gn(87 x,t,y)| < C”an - a‘”P’T(t - 8) Eal eXp{_'u t—s

t
| w=a0rGeatai = [ [ 0r00.0GEzm i+

2 / dr /R (a(r,). 0)(y — 2,0)G(s, 2, 7, y)dy

valid for all 0 < s <t <T, z € R and 6 € R2.
Exercise 4.3.B. Make sure that for any z € R? and s € [0,7)

t

[ ar [ (@00 - 2,006,270y = 0.0 € B
s Rd

As a consequence, we have the relation

=202 60ty = (b(s.)0.6)

. 1
lim
tls t — s

lim
tls t — s

held true for all s € [0,7) and x € R?.
It is now evident that the relationl4

ltifntl /(y—x,G)G(s,%t,y)dy:(a(s,x),9)7s€[O,T],xeRd,HeRd,
s U — S8 Jprd

can be quaranteed in the case of continuous function a, as follows from (8).
Exercise 4.3.C. Prove that relation (8) implies the following one

r 1
lim / / (s, x) [A— / (y —x,0)G(s,z,s + As, y)dy} dsdx =
0o Jra R

Asl0 S

_ /OT /R (s, ) (als, z), 0)dsdz (10)

valid for all real-valued functions ¢ being continuous and compactly supported on (0, T") X
R

We have thus arrived at the conclusion: a Markov process in R¢ with its transition
probability density G constructed in Theorem 2, in general, is not a dffusion process in
Kolmogorov’s sense. The drift vector of this process exists in some generalized sense
only, as relation (10) shows.

Remark. It is not difficult to observe that in all the arguments of this section, one
can put p = +00. So, these results remain to be true for the function (a(s,))(s,z)era
being measurable and bounded.
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4.4. Homogeneous processes. In the case where the local characteristics of a
diffusion process do not depend on time, the results of the previous section can be
obviously conformed to a homogeneous situation.

In particular, let an £ (R%)-valued function (b(x)),cre be given and let it satisfy
the conditions (i)—(ii) of Lesson 3. Denote by g(t,x,y) for t > 0,2 € R? and y € R?
transition probability density of a diffusion process in R% whose local characteristics are
given by the functions (ag(z))gcre and (b(x))crde, where ag(z) = 0. Let an R-valued
function (a(z)),cre be now given. In order to construct transition probability density
G(t,z,y),t >0,z € R% y € R?, of a diffusion process in R? with its local characteristics
given by the functions (a(z)),ere and (b(z)),ere, we should consider the following pair
of equations

G(t,z,y) = g(t,z,y) + /dT/ (1,2, 2)(a(2), GL(t — T, 2,9))dz,
R

(49)

t
G(t,a,y) = gltoy) + / dr [ Gz, 2)(a(z), gLt — 72, y))d=.
0 Rd

It turns out that there exists a solution to each one of these equations under the following
assumptions on a given R? -valued function (a(x)),cga

el = ([ lat@pas) " < oo ()

for some p > d. More precisely, the following assertion has summarized the homogeneous
versions of the results expounded in the previous section.

Theorem 4. Let an LT (RY)-valued function (b(x)),cre be given and let it satisfy
the conditions (i)-(ii) of Lesson 3. If a given R%-valued function (a(x)),cre satisfies
the condition (5°) for some p € (d, +00], then there exists the unique solution G(t,x,y),
t>0,z € Ry € RY to each one of equations (4°) satisfying the inequalities

2
G(t,z,y) < Kt~ 2exp{ ,u|y i 1

2
Gt 2w) < Ko F expl -l =00

}

in each domain (t,z,y) € (0,T] x RY x R? for T < oo (the constant K may depend on
T). That solution can serve as transition probability density of a homogeneous Markov
process in R? possessing the following properties

/(—xﬁ) tscydy—/dT/ G(r,z,y)dy,
R4 Rd

—,0)? T = T T, X
[ w=r026taay= [ [ 0006
2 [Lar [ (al). 00— 2.0G ()

where t > 0,z € R? and € R%.

Clearly, this process is a diffusion one in the Kolmogorov sense if (a(z)),cpe is a
continuous function. In the general case (that is, only condition (5°) is supposed to be
fulfilled), the relation

lim y o(x) F /]Rd(y - x,G)G(t,x,y)dy} dx = / a(x)p(x)dx

tl0 t Rd

holds true for any continuous compactly supported function (¢(z)),cpa-
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Exercise 4.4.A. Make sure that under the conditions of Theorem 4, the method
of successive approximations is applicable to each one of equations (4°); construct the
function G in a way like the series (7).

Exercise 4.4.B. Let (z(t), M, P%®) be a continuous homogeneous Markov process
in R? whose transition probability density G(t,z,y),t >0,z € R?, y € R4, is determined
by equations (4°). Suppose that the space of elementary events of this process coincides
with all continuous R%-valued functions (see Lesson 1). Denote by (x(t), M, P%?) a
continuous homogeneous Markov process with its transition probability density given by
the function g(¢,z,y),t > 0,7 € R% y € R? and let its space of elementary events be the
same as above.

Prove that for all z € R? and T' < 400, the restrictions of the measures P4 and P%?
on the o-algebra My are equivalent in the cases: (a) d > 2 and ||a||, < oo for some
p>d; (b)d=1and ||al]|, < oo for some p > 2. Those restrictions are not equivalent in

the case of ||a||, < oo for some p € (1,2), but ijN la(z)|?dx = +oo for some N > 0.
4.5. Comments and references. The results of this section are expounded in
details in the book [8].

Lesson 5. Diffusion processes in a medium with membranes
located on given surfaces.

5.1. Introduction. In this lesson we show how to construct a continuous ho-
mogeneous Markov process in R? with its diffusion operator being identically equal
to an identity operator in R? and its drift vector given by a function of the form
(v(2)q(2)6s(x))gere, where S is a given hypersurface in R?, (0g(x)),cra is a generalized
function whose action on a test function (p(z))zega is defined by (Js,¢) = [4(z)do
(this is a surface integral), v(z) for x € S is a unit vector being orthogonal to S at
the point x and (¢(z))zes is a given continuous function with its values in the interval
[—1, 1]. It is clear that such a process cannot be a diffusion one in the Kolmogorov sense.
Nevertheless, its local characteristics do exist in some generalized sense. In Lessons 1
and 2 we have already delt with some examples of the kind: in the case of d =1, S is
reduced to the point (S = {0}) and the corresponding process is called skew Brownian
motion; if d > 2 and S is a hyperplane in R, then the corresponding process is called
multidimensional Brownian motion with a membrane located on that given hyperplane,
and its transition probability density is given by an explicit formula.

5.2. Single—layer potentials. Suppose that S is a closed bounded hypersurface
separating R%(d > 2) into two open parts: the interior D; and the exterior D,, so that
R? = D;UD,US. Assume that there exists the unique tangent plane at each point x € S.
Let v(z) be the unit outer normal vector to S at x. For x € S we construct a so-called
local system of coordinates, i.e., a rectangular system of coordinates (y',%2,...,y%) with
the origin at = and with the direction of the axis y? along v(z). It is assumed that for
some 9 > 0 and each = € S the piece of surface Sy, (z) = SN B,,(z) can be given in the
local system of coordinates (with the origin at z) by an equation

y'=Fyy3 . yth,

where F is a single-valued function. Recall that S is called a surface of class H'T°
for some § € (0,1] if for every & € S the corresponding function F' has in the domain

. 2
Z;l;i(yj)z < 2 continuous partial derivatives 3712, k=1,2,...,d—1, satisfying in this

domain a Holder condition with exponent § and a constant independent of x. It will
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be assumed below that the closed hypersurface S belongs to the class H't9 for some
d € (0,1].

To simplify the further exposition, we assume that a diffusion process to be perturbed
is Brownian motion in R%, that is, a continuous homogeneous Markov process in R? with
its transition probability density given by

D
g(t,z,y) = (27715)*‘1/2 exp{f%}, t>0,2zeRyyeRL

For a given real-valued measurable function (¢(t, ))(t,2)e(0,7]x s satisfying the inequality
lo(t,z)| < Kpt?, t € (0,T], z € S, (1)

with some constants § > —1 and Kr > 0 (K7 is used to denote various constants),
define a function ®(¢,x) for (¢,2) € Dr by the integrals

D(t, x) / dT/ —1,z,y)p(r,y)doy, (2)

where the inner integral is a surface one. The fact that the integrals in (2) are well-
defined is a consequence of the following evident estimation

/g(t,m,y)doy < Krt=Y2 (t,z) € (0,T] x R% (3)
s

This inequality allows us to assert that the function (®(t,2))t,2)e(0,7]xre i continuous
and satisfies the inequality

®(t,2)| < KptPt/2 1€ (0,T), = € R

Moreover, one can easily observe that in the domain ¢ € (0,7],z ¢ S, the function ®
satisfies the heat equation
0P 1
— = =Ad.
ot 2
Now, for z ¢ S and xg € S (¢ > 0 is fixed), the derivative of the function ®(¢,x) in

the direction v(zg) is well-defined and can be written as follows

0d(t, x) —z,v(z
/ / > )g(t — 7, 2,Y)p(T, y)doy.

auaso t—71

The behavior of this derivative, as * — g, is described by the following theorem
on the normal derivative of a single-layer potential. This theorem is one of the most
beautiful theorems of classical analysis.

It turns out that the limit of this derivative depends on the way the point x is ap-
proaching the point zo € S. If a given function (h(s, z))(s,2)ep, has the limit, as  — ¢
along an arbitrary curve lying in some finite closed cone K in R? with vertex at xq such
that £ C D; U {xo}, then we say that the function (h(s,))s .)ep, has a non-tangent
inner limit at the point zop € S, and it is denoted by h(s,zo—). A non-tangent outer
limit is defined analogously, but this time the inclusion X C D, U{xo} must be held, and
h(s,xo+) is the designation for this limit.

One more remark should be made before formulating the theorem. If the hypersurface
S belongs to the class H'*°, then for zp € S and y € SN By, /2(20), the inequality
|(y — z0, v(z0))| < const |y — x|+ holds true. As a consequence, we have the following
estimation

_ t
/dT/ ’8915 Txo’ y) @(T,y)‘dygconst/ (t — ) T2 7Pdr = const tPTE  (4)
0

Ov(zop)
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valid for ¢ € (0,T], zo € S and any measurable function (o(7,%))(ry)e(0,1)xs satisfying
inequality (1). The function

/dT/ %9 aVTxO’ ) o(1,y)dy, t € (0,T],20 € S,

is called the direct value of the normal derivative %ﬁg z)) at the point x = x¢. The fact

that this function is well-defined follows from (4).

Theorem 1. If a closed bounded hypersurface S belongs to the class H'10, and the
Junction ((t,))t2)e(0,1)xs 15 continuous and satisfies inequality (1), then fort € (0,T]
and rg € S

o dg(t — 7,70,9)
e )(t ,xot) = Fo(t, zp) / dT/ ay—)ga(T,y)doy.

This statement is known as the theorem on the jump of the normal derivative of a
single-layer potential.

The version of this theorem for S being a hyperplane in R4(d > 2) is particularly
simple: since

8g(t,$,y) — (y _$7V)
ov t

where v is a unit vector normal to S, we have the relations

g(t,x,y) =0, t>0,z €S, yes,

t

: 8g(t —T,Z, y)

zgg;i/(; dT/S T@(T7 y)day - :F(P(t,.fo),t > vao € S7

valid for any continuous function ¢(t,y),t > 0,y € S, satisfying condition (1) (index x

at the letter v indicates the argument with respect to which the derivative % is taken).
If d =1 (S ={0}), then a simple-layer potential can be written as follows

¢
O(t,x) = / g(t —7,2,0)p(7)dr, t > 0,2 € RL
0

In this case the relations

O(t,x
hold true for any continuous function (¢(7)),>¢ satisfying the condition f; lo(s)|ds < oo
for some (hence, for any) & > 0.
5.3. The integral equations. Let a closed bounded hypersurface S in R? (d > 2)
be given such as in Theorem 1. Our starting point in this section is the following pair of
perturbation formulae (see equations (4°) in the previous lesson)

G(t,z,y) = g(t,z,y) / dT/Rd —71,2,2)(a(2),GL(T, 2,y))dz,

t
G(t,a,y) = gltoy) + / dr [ Gt =72 2)(a(2). d.(, 2, 9))d=.
0 Rd

Recall that g(t,z,y) = (2rt)~ %2 exp{—|y — z|?/2t} for t > 0,z € R? and y € R in this
lesson. We are going to put here a(z) = v(z)q(z)ds(z),» € R% One should first guess
that the function (%(t,m,y))xew for fixed t > 0,79 € S and y € R? must have a
jump at those points zy € S, where g(x¢) # 0.
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We have thus come to the conclusion that some sense to the product ((x)ds(z))yecra
must be attached in the case of a function (¢(z)),cres having non-tangent limits ¢(xo=+)
at the points zg € S. We propose the following rule

(0s,) = %/S[?/J(ZvL)—kw(z—)}da.

According to this rule, the first equation in (5) can be rewritten as follows

@t%w:ﬂ@wwf+Adfég@*ﬂ%@Vﬁ&wM@M@, (6)

I:,ij|
for 7 >0,z ¢€ S and y € R%
Similar reasonings concern the second equation in (5), but this time the function
(G(t,z,y))yera for fixed t > 0 and z € R? must have a jump at the point y € S, where
q(y) # 0. Hence, putting

where
11 0G

V(T,Z,y) = 5[61/(2) (T7£L',y) oG

r=z+

Vit 2, 2) = %[G(t, 2, 24) + Gt z, 2-)]

for t >0,z € R and z € S, we get

G(t,x,y) =g(t, z,y) Jr/o dT/Sf/(t — T,:c,z)affz)(r,z,y)q(z)daz. (7)

Equation (6) shows that the function G is completely determined by the function V.
On the other hand, the integrals on the right-hand side of (6) are nothing else but a
single-layer potential. Applying Theorem 1 to (6), we get for t > 0,z € S and y € R?

oG g
t,at,y) =
81/(:17)( 7, y) ov(x)

(t,z,y) F q(x)V(t,z,y)+

(®)

t ag
Jr/o dT/Sau(x) (t—T,2,2)V(7,2,y)q(2)do.

These equalities imply the integral equation for the function V(t,z,y),t > 0,2 € S,y €
R?,

_ 9g(t,z,y) /t /ag(t—T,x,Z)
Vi(t,z,y) = CER dr T o) V(7. 2, y)q(z)do. (9)
On the other hand, the relations
oG

valid for t > 0,z € S and y € R?, are also simple consequences of (8).
Now, taking into account the relations

35(92) (1,2,y) = (v(2),9.(7, 2,y)) = —(y(z)hgly(/]—’z’y))

valid for 7 > 0,z € S and y € R%, and applying Theorem 1 once again, we get from (7)
the equalities

G(t,l‘,yi) = g(t7 x,y) + Q(y)V(ta x,y)—i—

t " dg
+ [ [ V= re ) 50 s (),
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valid for t > 0,2 € R? and y € S. As a consequence, we have the integral equation for

V(t,z,y),t >0,z € R:y e S

t
Vo) = gta) + [ dr [ Te-rnasrzyaGde. ()
0 S 5’/(2)
and also the relations
Gt,z,y+) = (1 +qy)V(t,z,y), t >0,z e RLy € S. (12)

Our next step consists in constructing solutions to equations (9) and (11).

5.4. Solving equations (9) and (11). Denote by Q(t,x,y) for t > 0,z € S, and
9yt z,y)
ov(x)
of the inequality |(y —, v(z))| < const |y — z|'*9 valid for all z € S and y € S with some
constant depending on S only (recall that the bounded closed surface S belongs to the

class H'*9 with some § € (0, 1]), we can estimate the function @ as follows

_d+2 Py L
‘Q(tvxvy” < const-t 2 ‘y - £E|1+ eXp{_‘y - £E|2/2t} < t;{|y o m|d+1—2%—5’

y € S the restriction of the function on the set (0,+00) x S x S. Making use

(13)

where s can be arbitrarily chosen from the interval (1 — g, 1) and L is some positive
constant depending on S and . Such a choice of s implies the inequalities d+1—2s—§ <
d—1,2x+5—-2>0.Weput p=d+1—-2x—06, y=2»x+0—2and o0 =1 — 5; then
v > 0and ¢ > 0.

Let us now define a sequence of functions (Q®))x>1 given on the set (0, +00) x S x S
by setting Q) = @ and

t
Q0 (ta) = [ dr [ Qe 9@V - )l

where (q(z)).es is a fixed real-valued continuous function (we will use the notation
llg|l = max,cs|g(2)]). It is evident that

t
Q(k-‘rl)(t, Z, y) = /0 dT/SQ(k)(Ta €, Z)Q<t - 7% y)q(z)do‘z

for all t > 0,z € S, and y € S. Making use of estimation (13) and Lemma 2 from [12]
(see Ch.V. §2), we get for (t,z,y) € (0,T] x S x S

const
|Q(2)(t7$,y)| < Wa |Q(3)(t,$7y)

< const
‘ — t%720|y _ :L-|p72’y '

Therefore, an integer kg exists such that |Q*0) (¢, z, y)| < Cr for all (¢, z,y) € (0, T|xSx.S
with some constant Cp > 0. Then by induction on n, we arrive at the estimation

t’ﬂ*%
(1=5)(2=3)...(n— )

valid for all (¢,z,y) € [0,T] x S x S and n = 1,2,.... We have thus proved the following
assertion.
Lemma 1. The series

QO (¢, 2, y)| < O

R(t,z,y) = QW(t,z,y)
k=1

is convergent uniformly in x € S and y € S and locally uniformly in t > 0. The kernel R
is continuous in the arguments t > 0,x € S,y € S,y # x, and satisfies the inequality
K

|R(t, 2, y)| < W

(14)
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in any domain of the form (0,T] x S x S with some constants 1 € (0,1) and 5 €
(0,d — 1). In addition, this kernel is the solution to each one of the following pair of
integral equations (t > 0,z € S,y € 5)

R(t,xz,y) = Q(t,z,y) / dT/ T, T, %) —7,2,9)q(z)do,

t
R(t,z,y) = Q(t,2,y) + A dr /S Qr.2, 2)R(t — 7,2, y)a(2)do.

Finally, each equation in (15) has no more than one solution satisfying estimation (14).
Corollary. The solution to equation (9) can be given by

V(t,z,y) = 89 t i y / dT/ R(r,z,2) 89 ay(T)Z Y) q(2)do, (16)

fort>0,x € Sandye€ Rd; and the solution to equation (11) can be written as follows

IN/(t,x,y) =g(t,x,y) +/O dT/Sg(T,x,z)R(t —7,2,9)q(2)do, (17)

fort >0,z € R and y € S.

Exercise 5.4.A. Make sure that substituting (16) into (6) leads us to the function G
being the same as the result of substituting (17) into (7).

We have thus obtained two different representations for the function G. Our nearest
aim is to show that under some additional assumptions on S, the function G is indeed
transition probability density of the process desired.

5.5. Properties of the function G. The assertions of this section are proposed to
the reader as exercises provided by some hints.

Denote by B(R?) the Banach space of all real-valued measurable bounded functions
(¢(x))pera With the norm ||¢|| = sup,cga |¢(z)|. The designation C(R?) is used for the
Banach space consisting of all continuous functions from B(R¢) with the same norm.

Notice that equality (16) implies the following estimation

[ Vtaaelil < Kelple (13)
valid for all t € (0,T],z € S and ¢ € B(R?). So, if we put
utag) = [ Gltay)elo)dy, t> 0.0 € BY, o€ BRY,
Rd

then for any T > 0, there exists a constant Cr > 0 such that the inequality |u(t, z, )| <
Cr||¢|| holds true for all t € (0,7],z € R and ¢ € B(RY).

Exercise 5.5.A. Verify that the function u(t, z, ¢) defined above for ¢ > 0,z € R? and
© € B(R?) is a solution to the heat equation in any domain of the kind (¢,z) € (0,T] x
(D; UD,) for all T > 0. In the case of ¢ € C(R?), the initial condition u(0+,, p) = p(z)
is fulfilled at any point z € R%.

Hints. The first statement follows from the equality

u(t,z, ) = / g(t,z,y) dy+/ dT/ (t—1,2,2) (z)[ V(T,z,y)ap(y)dy} do,.
Rd Rd
For proving the second one, make use of the equality

/ V(t,z,y)dy =0, t >0,z € S.
Rd
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Exercise 5.5.B. Verify that for all t; > 0,%, > 0,z € R? and ¢ € B(R?), the following
relation

u(tl +t27xa90) :u(tlvivu(t%%(p)) (19)

holds true.
Hint. Establish first the relation

Vis+t,z,y)e(y)dy = Vt,z, z)u(s, z,p)dz
R4 R4
valid for all s > 0,¢ > 0,z € S and ¢ € B(R?).
As follows from (12), the function G in its third argument is discontinuous. Let us
believe that G(t,z,y) = g(t,z,y) for all t > 0,2 € R? and y € S. Then a very simple
consequence of (19) is the relation

G(s+t,z,y) = G(s,z,2)G(t, z,y)dz
Rd,
valid for all s > 0,t > 0,z € R? and y € R?. In other words, the function G satisfies the
Kolmogorov—-Chapman equation.

Exercise 5.5.C. Make sure that if ¢ € B(R?) and o(z) > 0 for all € R, then
u(t,r,p) > 0 for all t > 0 and # € R? (under some additional requirements on the
surface S, see below).

Hints. Show first that if ¢, € B(R?) for n = 1,2,... and lim,,_, ¢, (7) = (z) for
all z € R? and sup,, ||@n|| < oo, then lim,, ;o u(t, =, @,) = u(t,z, ). Consequently, it
suffices to prove that for any compactly supported function ¢ € B(R?) being smooth
enough, we have u(t,z,p) > 0 for all z € R? if only ¢(z) > 0 for all x € R%.

Now, let ¢ be a function on R? compactly supported, twice continuously differentiable
and bounded along with its derivatives. Then the function u(t,z,p),t > 0,2 € R4,
possesses the following properties

(i) it satisfies the heat equation in the domain (0,400) x (D; U D,);

(ii) it satisfies the initial condition u(0+,z,¢) = ¢(z),z € R%;

(iil) the following relations

Ou(t, x+
) gl [ Vi e (20)
hold true for all ¢ > 0 and = € S (see (10)).

Let (z) > 0 for all z € RZ. If for some T > 0, we have inf(y oyepo, ) xre ult, ¥, ) =
v < 0, then there exists to € (0,7] and 2o € R? such that u(tg, 29, ) = 7. It is not
difficult to comprehend that xy € S. Therefore the inequalities

Ou(to, zo+, ¥) Ou(to, zo—, p)
_— > —_— << 21
Ov(zo) 2 0 and Ov(z) =0 (21)

are fulfilled.

We now show that under some additional assumptions on surface S, any equality is
not allowed in these inequalities.

Definition. We say that a point x € S has the property of inner sphericity if there
exists a closed ball B C D; U {z} such that z € B. The property of outer sphericity is
defined similarly.

The proof of the following assertion is based on Theorem 14 in [12], Chapter II, §5, in
which an essential role is played by the assumption about the sphericity property of the
points of S.

Lemma 2. Assume that the surface S belongs to the class H'*° and, moreover, each
point x € S has the property of both inner and outer sphericity. Then instead of (21),
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the strict inequalities

Ou(to, xo+, ) <0 and Ou(to, zo—, ¢)

ov(zop) Ov(zop) <0 (22)

hold true.

Let us return to Exercise 5.5.C. Recall that the continuous function (¢(z)),cs was
supposed to take on its values from the interval [—1, 1]. But then relations (20) contradict
the ones in (22). This means that our supposition that v < 0 is not true. In other words,
if p(z) > 0 for all € R?, then also u(t,z, ) > 0 for all t > 0 and = € R%.

As a consequence of Exercises 5.5.A and 5.5.C, we have the following assertion.

Corollary. Under the assumptions of Lemma 2, the following inequality

lu(t, z, ©)| < [l¢l| (23)

holds true for all ¢t > 0,2 € R? and ¢ € B(R?).

Taking into account now that fRd G(t,x,y)dy = 1 (this follows from the equality
Jpa V(t,z,y)dy = 0 valid for all t > 0 and = € S), we can assert that the function G
can serve as transition probability density of a Markov process in R?. The next exercise
proposes to prove that the continuity condition is fulfilled for this process.

Exercise 5.5.D. Suppose that conditions of Lemma 2 are fulfilled. Verify that the
inequality

sup / ly — z|*G(t, z,y)dy < Kt (24)
z€RT JRA

holds true for all ¢ € (0, 7] with some positive constant Kp finite for T' < +00.
Hints. Show first that for fixed zg € R? and T' > 0, the inequality

[ Wit lly = woltdy < Krllo —zol* + )72
Rd
is valid for all ¢t € (0,7] and x € S. Deduce from this that

/ ly — 20" G(t, 70, y)dy < K1+
Rd

! —d/2 ly — 2o|? 3/2 4_—1/2
+KT/O dT/S(27T(t—T)) exp{ - m}h + |y = zol'77/]doy,

and this implies (24).

The following statement summarizes the consideretions of this section.

Theorem 2. Let a closed bounded hypersurface S in R?* belong to the class H*0 for
some § > 0 and let every point of S possess the property of inner and outer sphericity.
Then there exists a continuous homogeneous Markov process (x(t), My, P,) in R? whose
transition probability density is given by the function G(t,z,y),t > 0,z € R% y € RY
defined by equality (6) or (7) with a given continuous function (q(x))zes taking on its
values from the interval [—1,1].

Exercise 5.5.E. Establish the relations

| w=a06tamis= [ i [ @).07 0.

/Rd(y —2,0)°G(t,z,y)dy = t|0]* + 2/0 dT/S(u(z),Q)(z —z,0)V(r,z,2)q(z)do,

valid for t > 0,2 € R% and 6 € R?.
These relations imply the following assertion.
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Theorem 3. The Markov process in Theorem 2 is a diffusion process in the following
sense: for any continuous compactly supported function (¢(x))yere and 0 € RY, the
relations

i [ e [ @206t nili = [ w000,

tJ0 JRd t s

. 1
ltlm o(x) {f/ (y — x,G)QG(t,w,y)dy} dx = \9\2/ o(y)dy
10 JRra t Rd Rd

hold true.
Section 5.6. Comments and references. The results of this lesson (and more
general ones) can be found in [16], [8].
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Lesson 6. Multidimensional Brownian motion with a membrane
being located on a given hyperplane and acting in an oblique
direction.

6.1. Introduction. Using the methods developped in the previous lessons, we now
show how to construct a diffusion process in R?, d > 2, such that its diffusion operator
coicides with an identity operator in R? and its drift vector is given by the function
(N(2)85())yecra, where S is the hyperplane in R? being orthogonal to a fixed unit vector
v € R% (N(z))ses is a given Ré-valued vector field on S; (05(7)),cra is a distribution
(a generalized function) on R? whose action on a test function (p()),cra is given by
(0s,9) = [4p(x)do (this is a surface integral, which, in fact, is the integral over R4~
with respect to the Lebesgue measure in R?~1). If, in particular, N(x) = vq(z) for z € S
with some continuous function (¢(x))zes taking on its values from the interval [—1, 1],
then the process of this lesson is the one described in the Examples 1.4.D and 2.4.C
above. More precisely, the process of those examples is our starting point for further
perturbing it by the vector field (a(z)ds(x)),erde, where a(x) = N(z) —vq(x) for x € S.

6.2. An integro-differential equation for a diffusion perturbed. So, we are
given by a fixed unit vector v € R% d > 2. Denote by S the subspace of R? that is
orthogonal to v : § = {x € R?: (z,v) = 0}. The open half-spaces {r € R?: (z,v) > 0}
and {z € R? : (z,v) < 0} are denoted, respectively, by D, and D_. Let continuous
functions (a(z))zes and (¢(x))zes with their values, respectively, in S and the interval
[—1,1] be given. We set N(z) = a(z) + vg(z) for z € S.

Denote by go(t,x,y) for t > 0,7 € R? and y € R? transition probability density of
Brownian motion in R?

go(t,z,y) = (2mt) =2 exp{—|y — «[*/2t}.
By g(t,z,y) for t > 0,z € R? and y € R?, we denote transition probability density of the
process considered in Examples 1.4.D and 2.4.C above, that is

t
oltse) = wltseny) + [ ar [ gole =) 2
0 S

Notice that the second item on the right-hand side of (1) is nothing else but taken with
the sign minus the normal derivative (in y) of a single-layer potential. According to
Section 5.2, we have the relations

g(t,z,y£) = (1 £4(y))go(t, v, y) (2)

90(7, 2,9)q(2)do . (1)
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valid for t > 0,7 € R? and y € S (g(t, 7, y+) means the non-tangent limit of g(¢, z, 2),
as z — y in such a way that z € Dy; ¢(t,z,y—) is defined by analogy, but this time
ze€D_).

Equalities (2) show that the condition ||g|| = sup,cg |g(z)] < 1 is necessary for the
function g to take on only non-negative values. On the other hand, this condition is
sufficient for that, as the following inequalities show (see Example 1.4.D)

(1= llglhgo(t,z,y) < g(t,z,y) < (L+ lalDgo(t, z,y), t > 0,2 € R,y € R

As a function of the arguments (¢, z) € (0, +00) x R? (for fixed y € R?), the second
item on the right-hand side of (1) can be considered as a single-layer potential. Hence,
applying the main theorem of Section 5.2, we get the relations

dg(t, z,y) _ dgo(t, z,y)
61/2 z=x+t n (1 + q(x)) 81/35

3)

valid for all ¢t > 0,2 € S and y € R%.

It was an exercise for the reader to verify that the function g defined by (1) satis-
fies the Kolmogorov—Chapman equation and also the continuity condition of Lesson 1.
Having done that exercise, the reader must be sure that the function (1) determines a
diffusion process in R? (in some generalized sense, see Example 2.4.C) with its diffu-
sion operator being an identity operator in R% and its drift vector given by the function
(vq(x)ds(x))pera. Our aim now is to perturb this process by the S-valued vector field
(a(@)0s()) pepa-

To do this, we need some information about the partial derivatives of the function (1)
as a function of the argument = € R%. Relations (3) characterize such a derivative in the
direction v. The following assertion contains some information about the corresponding
derivatives in directions lying in S (under some additional assumptions on the function
q)-

Recall that an R™-valued (m > 1) function (f(x)),es is called Holder continuous with
the exponent A € (0,1] if

|f(z) — f()l
azesslg)es |$ - yIA <o (4)
TH#Y

One more group of reminders: for z € R%, we make use of the designation T for the
orthogonal projection of z on S (see Example 1.4.D); for given real numbers a and b, the
minimal one of them is denoted by a A b.

Let £ be an arbitrary unit vector in S. The derivative in the direction g of the function
(g(t,2,y))pere (for fixed t > 0 and y € RY) will be denoted by

dg(t,z,y)
0B

Lemma 1. Assume that the function (q¢(z))zes with its values in [—1,1] is Hélder
continuous with the exponent A € (0, 1]. Then the function g defined by (1) as a function of
9g(t, z,y) (t
— (>

9B

x € R? is differentiable in any direction 8 € S (|8] = 1) and the derivative
0,z € RY y € R?) satisfies the following relations:
(1)
dg(t dgo(t dgo(t, T 2
g(t, a:y) 90(t, 7,y) go(,m,ﬂ)exp{_(|(w,V)|+\(y7V)|) }+
e 9Bz 9B 2t

/ / e Bgo(gyg D (4(¢)  q(@)doc. t> 0,0 € R,y e R
¢

+ q(7) sign(y,v) +
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(i) for any T € (0,+00), there exist constants C > 0 and p > 0 (they may be chosen
independent of 8 € S, |8| = 1) such that

‘8g(txy ‘<Ct_ +

2
Texp{ ulx yl

t

(iii) for any T € (0,+00), there exist some constants C > 0 and p > 0 such that the
inequality

},te (0,T],z € R%, y € R%;

atltet) 02D < oy o4 exp { — Bi(le — 91 A~ 1) + (0]}
B t
holds true for all t € (O,T],x €SyeRyze 8,88 (|3 =1).

Exercise 6.2.A. Prove all the statements of Lemma 1.

Hints. The integrals in the equality (i) are well-defined since (q(z)).es is Holder
continuous; the validity of that equality can be easily verified. The estimate (ii) is a
simple consequence of (i) and the inequality in Theorem 1 from Lesson 3. Proving the
estimate (iii) is not a difficult thing for the reader having acquired knowledge of the
parametrix method for constructing fundamental solutions to parabolic equations (that
is, in proving the theorem just cited).

Together with the function (¢(z))zes taking on its values from the interval [—1, 1], we
are given by an S-valued bounded function (a(z))zes. In what follows, they are both
supposed to be Holder continuous with the exponent A € (0,1). As mentioned above, our
aim is to construct a diffusion process in R? with its diffusion operator being an identity
operator in R? and its drift vector given by the function (a(z) + ¢(z)v)ds(x),r € R4,

Denote by G(t,z,y) for t > 0, * € R? and y € R? transition probability density of
the process desired. In order to construct the function G, we make use of the first one of
equations (5) from the previous lesson. In that equation, the function g is now defined
by (1) (remind that for fixed ¢ > 0 and x € R?, the function (g(t,z,y)),es coincides
with (go(t,z,y))yes ) and the function (a(z))yere is now given by (a(z)ds(x))yera-
Introducing the notation V(7,z2,y) = (a(z), V.G(7,z,y)) for 7 > 0,2 € S and y € R?
(this is an unknown function as well as the function G), we arrive at the following
integro-differential equation

t
G(t,l',y) = g(t,l‘,y) +/ dT/ go(t_T,$,Z>V(T,Z,y)dUZ, (5)
0 S

where t > 0,z € R? and y € R%.
Suppose that the function (V (7, 2,9)).es for fixed 7 > 0 and y € R? is Hélder contin-
uous and put

1/)(75, €z, y) = (01(117)7 vﬂcg(t’ €, y))v K(t7 €L, y) = (O‘(m)7 ngo(t, €T, y))
for t > 0,2 € S and y € R% Then equation (5) implies the following integral equation
for the function V'

t
Vit,2,y) = ot 2, y) + / dr /S K(t — 2, 2)V(r, 2, y)do, (6)

where t > 0,2 € S and y € R?. Having solved this equation, one should then substitute
the solution into equation (5), in order to obtain transition probability density of the
process desired.

If we are not interested in the question whether that transition probability density
does exist, we can simplify our problem. Let us multiply both sides of (5) and (6) by an
arbitrary Borel measurable bounded function (¢(y)),cre and integrate them over y € R%.
Putting

(e / G(t,2, 9)p(y)dy, (t.7) € (0, +00) x RY,
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Vo(t,x) = RdV(t’x’y)w(y)dy, (t,x) € (0,+00) x S,

Po(t,x) = Rdl/)(t,x,y)sa(y)dy, (t,z) € (0,+00) x5,

we get the following integral equation (t > 0,z € 5)

Vo(t,x) = ¢y (t, ) —l—/o dT/SK(t —7,2,2)V,(T, 2)do. (7)

and the relation for Typ(x),t > 0,z € R?

Tip(x) = /Rd g(tw,y)cp(y)dy—i—/o dT/SgO(t —T,2,2)V,(T, 2)do.. (8)

The problem now consists in solving equation (7). After that, one should show that
relation (8) determines the process desired.

6.3. Regularizing and solving equation (7). As in the previous lesson, we use
the notation B(R?) for the Banach space of all real-valued bounded Borel measurable
functions (p(z)),ere with the norm |l¢|| = sup,cpa |p(z)| and C(R?) for the closed
subspace of B(R?) consisting of all continuous functions.

We are going to deal with equation (7) which is a Volterra integral equation of the
second kind. It is determined by the function ¥, (¢, z), (t,z) € (0,+00) x S, ¢ € B(RY),
and the kernel K(t,z,y), (t,z) € (0,4+00) x S,y € R According to Lemma 1, the
function 1, processes the following properties:

a) for any T' > 0, there exists a constant C' > 0 such that [¢, (¢, )| < C|l¢|t~1/2 for
all (t,x) € (0,T] x S and ¢ € B(R?);

b) for any T' > 0. there exists a constant C' > 0 such that |, (t,z) — (¢, 2)| <
Cllpl|t=+N/2|z — 2> for all t > 0,2 € S,z € S and ¢ € B(RY).

As for the kernel K, the following estimate is a simple consequence of the inequality
(ii) of Lemma 1:

for any T > 0, there exist constants C > 0 and p > 0 such that

|K(t,z,2)| < Ct~F exp{—plz — 22/t}, t € (0,T),z € S,z € S.

Notice that this estimate does not allow one to conclude that this kernel has a weak
singularity (the integral operator in (7) acts in the space of functions defined on (0, +00) x
S). Therefore, we cannot apply the method of successive approximation immediately to
equation (7): it must be first regularized.

With that end in view, introduce into considerations an integro-differential operator
€ acting on a real-valued function f(t,z) ((¢,2) € (0,+00) x S) in accordance with the
rule

efta) =2{ 2 / ar /S i) / " holt = . Oh(E - 7. + Caly). p)dCda, ..

where ho(t,¢) = (2nt)~/2exp{—¢?/2t} for t > 0 and ¢ € R! and h(t,z,y) =
(2mt)~(@=D/2 exp{—|y — x|?/2t} for t > 0,2 € Sand y € S.

Applying the operator £ to equation (7) leads us to the following equation (¢ > 0,
x€S)

Vo(t,x) = Jy(t,x) —|—/0 dT/SI?(t —7,2,Y)V,(T, y)doy, (9)

where {/L, (t,z) for t > 0 and x € S is given by the equality

Dot ) :ww(t,a:)—i—Z/O dr/sw(r,g)dag /000 w. (10)
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Tt = 2+ a(E)C,€) — h(t — 72+ o(w),E)dC +2 / dr [S o (7, €)

o0 a _
— (T, x)]da—g/o Wh(t — 7,2+ o2)C,y)d¢

and K(t — 7,2,y) for 0 < 7 < t,z € S and y € S is defined by the formula
k(t*ﬂ%y) =

t ooaho
=2 [ ds [© G0 =5.0dC [0 5.0+ 0O OO, Teamls — &)= (1)

7h(t — 5T+ O‘(y)c’é')(a(y)a vfg()(s -7, 53 y))]dUE + (Oé(.’ﬂ) - a(y)a Vzg()(t - 7,7, y))

The following two exercises must be not difficult to those readers who have already
mastered the parametrix method for constructing fundamental solutions to parabolic
equations. B

Exercise 6.3.A. Making use of representation (10), verify that the function v, pos-
sesses the properties a) and b) above as well as the function ), does.

Exercise 6.3.B. Using formula (11), prove that for any T" > 0 there exist some
constants C' > 0 and p > 0 such that the estimate

[K(t =7 2,y)| < Ot —7) "R exp{—ply — 2/t - 7)} (12)
holds true for all 0 < 7 < t < T, xeSagdyES.

Inequality (12) shows that the kernel K has a weak singularity. Taking into account
additionally that the function Jw possesses the property a) (see Example 6.3.A), we
arrive at the conclusion that the method of successive approximations is applicable to
equation (9). As a result, we have the following statement.

Lemma 2. Let the function (q(x))zes with its values in the interval [—1,1] and the
S-valued bounded function (a(x))zes be Holder continuous with the exponent X € (0,1).
Then for any ¢ € B(R?), there exists a solution V,(t,x), (t,x) € (0,400) x S, of equation
(9) such that: o) V,, is continuous with respect to its arguments and for any T < oo it
satisfies the inequality

V(t,)| < Cllglt/2 (13)
for all (t,z) € (0,T] x S with some constant C > 0; ) there is only one solution
of equation (9) possessing the property «); =) if a sequence {¢n,n = 1,2,...} of real-
valued Borel measurable functions (¢n(x))zere s such that lim, o on(z) = @(z) for
all z € R? and sup,,~q |l¢nl| < 0o, then lim, o Vi, (t,x) = Vio(t,x) for all t > 0 and
x €8;0) let o € B(RY) be such a function that its gradient (Vip(x))yera is bounded and
Hélder continuous with the exponent X € (0,1), then the restriction of V., on the domain
[0,T] x S is Holder continuous in the argument t € [0,T] and the argument x € S with
the exponents A/2 and N, respectively.

Exercise 6.3.C. Prove all the assertions of Lemma 2.

Hints. Assertions a) —+) easily follow from the construction of successive approxima-
tions for the solution V, of equation (9). The statement ) is a consequence of Lemmas
1 and 2 in [17].

A question now arises, how does a solution of equation (9) is related to equation (7).
The proof of the following statement can be found in [17].

Lemma 3. The equations (7) and (9) are equivalent in the following sense: every
solution of (9) is also a solution of (7) and vice versa.

We have thus had a solution V,, of equation (7) for an arbitrary ¢ € B(R?). Substitut-
ing it into relation (8), we obtain a family of linear operators (1}):~¢o acting in the space
B(R?). Estimate (13) implies the boundedness of those operators. Our nearest aim is
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to show that this family of operators determines a diffusion process in R¢ (in the same
sense as in Lesson 5), the existence of which was declared in Introduction to this lesson.

6.4. Constructing the process desired. Taking into account assertion 7y) of
Lemma 2, we can assert that lim, ., Tion(z) = Typ(z) for all t > 0,2 € R? and any
sequence {(¢n(z))gere,n = 1,2,...} of functions from B(R?) such that sup,,~; ||¢n| <
400 and lim,, s o @, (z) = ¢(z) at each z € R, Introduce the notation u(t, z, ¢) = Typ(x)
fort > 0,2 € R% and ¢ € B(RY) and notice that this function is the sum of two potentials:
one of them is a volumetric heat potential and the other one is a single-layer potential
associated with transition probability density g. Well-known properties of those potentials
allow one to verify the following properties of the functions u(t,z,¢),t > 0,2 € R?:

1) it is a continuous function of the arguments ¢t > 0 and € R%;

2) it satisfies the heat equation

1
% = 5Au(t,x,<p)

in the region t > 0, x € D, UD_;

3) for each ¢ € C(R?), it satisfies the initial condition

u(0+,z,¢) = ¢()
at any point = € R¢;
4) it satisfies the boundary condition
ou(t,z,p) 14 q(z) u(t, z, ¢) 1 —q(z) Qu(t, 2, p)
Oa(x) 2 ov szt 2 ov imae
for all t > 0,7 € S and ¢ € B(R?).

The uniqueness of a solution to this problem follows from the book [12] (see Chapter
II, §5). As a consequence of this, we have the relation

U(S + ta‘ra (p) = u(t? .I‘,U(S, " 90))

valid for all s > 0,t > 0,7 € R? and ¢ € B(R?). In addition, wu(t,z,p0) = 1 for t > 0,
where o(z) = 1. Finally, if ¢ € B(R?) is such that p(z) > 0 for all z € R?, then
u(t,z,p) >0 for all t > 0 and = € RY,

All these properties lead us to the conclusion that there exists transition probability
P(t,z,dy) in (R?, B) such that

u(t,x, ) = / o(y)P(t,z,dy), t >0,z € R?, » € B(R?).
Rd

The fact that there is an integral representation for the function u(t,z,¢),t > 0,z € R?
and ¢ € B(R?) (see (7) and (8)) must help to the reader to cope with the following
exercises (compare with Exercises 5.5.D and 5.5.E).

Exercise 6.4.A. Make sure that for any 7' > 0, there exists a constant C' > 0 such
that the inequality

/ ly — x|*P(t, x, dy) < Ct?
Rd

holds true for all t € (0,7] and z € R%.
Exercise 6.4.B. Verify that for any compactly supported function ¢ € C(RY) and
any 6 € R%, the following relations (remind that N(z) = a(z) + q(z)v for = € S)

lim1 o(x) [/Rd (y —z,0)P(t,x, dy)}dx = /S(N(;E), 0)o(x)do,,

tl0 ¢ Rd

lim1 o(x) [/Rd(y —2,0)%P(t,x, dy)}dx = |6 ./Rd o(z)dx

tl0 ¢ Jpa
are fulfilled.
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As a summation of the considerations of this lesson, we have the following result.

Theorem. Let a bounded S-valued function (a(z))zes and a function (¢(z))zes
with its values in the interval [—1,1] be given such that they both are Hélder contin-
uous with some exponent A € (0,1). Then there exists a continuous Markov process
(z(t), My, P,) in RY being a diffusion one (in a generalized sense) with its diffusion
operator given by an identity operator in R% and its drift vector given by the function
((a(z) +q(@)v)ds(7))sera-

Exercise 6.4.C. Try to construct the generalized diffusion process of this lesson
making use of the second one of equations (5) from the previous lesson.

6.5. Comments and references. This lesson contains the results (with some
modifications) of the paper [17].
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