
Theory of Stochastic Processes
Vol. 28 (44), no. 2, 2024, pp. 39–75

B. I. KOPYTKO AND M. I. PORTENKO

SIX LESSONS ON THE THEORY OF DIFFUSION PROCESSES

The itinerary from the notion of a diffusion process to that of a generalized diffusion

process is split into six lessons. Numerous exercises throughout its extent make this
minicourse look like a collection of etudes for those ones who are interested in the

theory of diffusion processes.

Introduction.
In response to the request of editorial board of this journal, we present our minicourse

on the theory of diffusion processes consisting of six lessons. Being quite conscious of
impossibility to squeeze any considerable part of that theory into the framework of so few
lessons, we still venture on publishing some synopsis of the minicourse with the purpose
of showing how does one natural modification in understanding the concept of a diffusion
process result in an essential extension of the original set of diffusion processes. That
extended set turns out to contain some processes that can be treated as diffusion ones
only in a certain generalized sense. Moreover, generally speaking, such a generalized
diffusion process cannot serve as a mathematical model for describing any dynamical
system evolving under the influence of random factors: some new kind of interpretations
should be proposed.

To clarify our idea in more details, remind that according to Kolmogorov’s definition∗),
a diffusion process in a d-dimensional Euclidean space Rd is determined by its local
characteristics, that is, by two functions defined at any instant of time and any point of
Rd : one of them is Rd-valued and is called drift vector; the other one called diffusion
operator takes on its values from the set of all linear operators in Rd being non-negative
definite. Denote these functions, respectively, by a(t, x) and b(t, x) for t ≥ 0 and x ∈ Rd.

The following result was proved by A.N.Kolmogorov almost 100 years ago (see Lesson
2 below). Let P (s, x, t, dy) for 0 ≤ s < t ≤ T and x ∈ Rd be transition probability
of a diffusion process in Rd with its local characteristics given by continuous functions
(a(t, x))(t,x)∈DT

and (b(t, x))(t,x)∈DT
, where the notationDT = {(t, x) : t ∈ [0, T ], x ∈ Rd}

is used for T > 0. Suppose that a real-valued continuous bounded function (φ(x))x∈Rd is
given such that the function

u(s, x) =

∫
Rd

φ(y)P (s, x, t, dy), s ∈ [0, t), x ∈ Rd, (1)

for fixed t ∈ (0, T ] is twice continuously differentiable in the argument x. Then this
function is differentiable in s as well and it satisfies the equation

u′s(s, x) + (a(s, x), u′x(s, x)) +
1

2
Tr(b(s, x)u′′xx(s, x)) = 0 (2)

in the domain (s, x) ∈ [0, t) × Rd; by the same token the final (in opposite to initial)
condition

u(t−, x) = φ(x), x ∈ Rd, (3)
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is fulfilled.
Equation (2) is called the Kolmogorov backward equation. One of the consequences

of it is the following interpretation of a diffusion process.
If it so happens that b(t, x) ≡ 0, then the corresponding diffusion process is nothing

else but a dynamical system (maybe, not unique) that is generated by the vector field
(a(t, x))(t,x)∈DT

. In the general cases (b(t, x) ̸≡ 0), our process can be treated as the result
of perturbing the dynamical system mentioned above by some random factors generated
by the operator field (b(t, x))(t,x)∈DT

.

The development of methods for constructing a process from given Rd-valued func-
tion (a(t, x))(t,x)∈DT

and operator-valued function (b(t, x))(t,x)∈DT
is one of the most

important problems in the theory of diffusion processes. Some classical results of the
kind are formulated in Lesson 3. The so-called parametrix method for constructing
the fundamental solution of equation (2) together with the maximum principle for that
equation allow one to obtain transition probability density of the diffusion process de-
sired. This construction can be fulfilled under the following assumptions on the given
functions a and b : they are bounded and smooth enough and besides, the function b
is supposed to be uniformly nonsingular (see Lesson 3). Suppose that given functions:
Rd-valued (a(s, x))(s,x)∈DT

and operator-valued (b(s, x))(s,x)∈DT
satisfy these conditions

and let g(s, x, t, y), 0 ≤ s < t ≤ T, x ∈ Rd, y ∈ Rd, be transition probability density of
the diffusion process in Rd whose local characteristics are given by those functions. In
other words, g is the fundamental solution of equation (2). Denote by g0(s, x, t, y) for
0 ≤ s < t ≤ T, x ∈ Rd, and y ∈ Rd the fundamental solution of the equation

v′s(s, x) +
1

2
Tr(b(s, x)v′′xx(s, x)) = 0. (4)

The assertions presented in Lesson 3 allow one to arrive at the following relations between
the functions g and g0

g(s, x, t, y) = g0(s, x, t, y) +

∫ t

s

dτ

∫
Rd

g0(s, x, τ, z)(a(τ, z),∇zg(τ, z, t, y))dz,

(5)

g(s, x, t, y) = g0(s, x, t, y) +

∫ t

s

dτ

∫
Rd

g(s, x, τ, z)(a(τ, z),∇zg0(τ, z, t, y))dz

valid for 0 ≤ s < t ≤ T, x ∈ Rd and y ∈ Rd.
These relations are known in mathematics as perturbation formulae. They inspire one

more point of view on the diffusion process whose local characteristics are given by the
functions a and b. Such a process is the result of perturbing the diffusion process with
the local characteristics a0 and b (the function a0 is defined by the identity a0(t, x) ≡ 0)
by the vector field (a(t, x))(t,x)∈DT

.
We can now formulate the modification in understanding the notion of a diffusion

process that was mentioned in the first paragraph of this introduction. In Kolmogorov’s
definition, the local characteristics of a diffusion process are determined as the pointwise
limits as ∆s ↓ 0, of the following expressions (“pointwise” means the existence of the
limits for any s ∈ [0, T ) and x ∈ Rd)

1

∆s

∫
Bε(x)

(y − x)P (s, x, s+∆s, dy) and
1

∆s

∫
Bε(x)

(y − x, θ)2P (s, x, s+∆s, dy),

where θ ∈ Rd, Bε(x) = {y ∈ Rd : |y − x| < ε} for x ∈ Rd and ε > 0 (θ and ε are fixed)
and P (s, x, t, dy) for 0 ≤ s < t ≤ T, x ∈ Rd is the designation for transition probability
of the process under considerations; the first limit determines the drift vector a(s, x) and
the second one determines the form (b(s, x)θ, θ).
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In our modified definition, those limits are supposed to exist in the following sense:
the limits

lim
∆s↓0

∫ T

0

∫
Rd

φ(s, x)
[ 1

∆s

∫
Bε(x)

(y − x)P (s, x, s+∆s, dy)
]
dsdx, (6)

lim
∆s↓0

∫ T

0

∫
Rd

φ(s, x)
[ 1

∆s

∫
Bε(x)

(y − x, θ)2P (s, x, s+∆s, dy)
]
dsdx, (7)

exist for any continuous compactly supported in (0, T )×Rd function φ (θ ∈ Rd and ε > 0
are fixed). In other words, the existence of local characteristics of a Markov process is
now supposed in a weak sense. It is natural to call generalized diffusion a Markov process
in Rd whose local characteristics exist in this weak sense.

In Lessons 4–6, we show how to construct a generalized diffusion process in Rd such
that its diffusion operator is given by a regular function (b(t, x))(t,x)∈DT

and its drift
vector is given by a function (a(t, x))(t,x)∈DT

from the class Lp for some p being large
enough (Lesson 4) or (Lessons 5–6) from the class of generalized functions of the form
(N(x)δS(x))x∈Rd , where S is a given hypersurface in Rd, (N(x))x∈S is a given vector field
and (δS(x))x∈Rd is a generalized function on Rd acting on a test function (ψ(x))x∈Rd ac-
cording to the rule ⟨δS , ψ⟩ =

∫
S
ψ(x)dσ (in fact, some “generalization” of this generalized

function is needed). The main devices for constructing processes of the kind are pertur-
bation formulae (5).

As the reader can see, there is no dynamical system in Rd generated by the vector field
(a(t, x))(t,x)∈DT

considered in Lessons 5–6. We propose to interpret the corresponding
generalized diffusion process as a diffusion one in a medium where some membranes
are located on given hypersurfaces. It is a very interesting problem to investigate the
behaviour of such a diffusion process near the membrane. Some results of the kind can
be found in our recent publication (see [11]).

If we now add to what have been said before, that Lesson 1 contains some kind of
concise introduction to the theory of Markov processes, then the reader must be able to
realize the contents of our minicourse on the whole.

The exposition of the underlying ideas in the theory of diffusion processes was our goal
in preparing this minicourse for publishing and “from diffusion to generalized diffusion”
was our motto. Many details are hidden in exercises proposed for reader’s thinking them
over. In fact, several steps in proving the main assertions of Lessons 4–6 are presented
as exercises provided with some hints. We are sure, those readers are able to cope with
the exercises who have mastered the technique of the theory of heat potentials or even
better, the technique of the parametrix method for constructing a fundamental solution
to equation (2). Summarizing and resorting to terms of music, we can say that our
minicourse is a collection of etudes for those readers who are interested in the theory of
diffusion processes.

Acknowledgement. We are truly grateful to N.F.Riabova for helping us prepare our
working materials for publication.

Lesson 1. Markov processes.

1.1. Definition. Let the following objects be given:

• A measurable space (Ω,F); any point ω ∈ Ω is interpreted as an elementary
event; F is some σ-algebra of subsets of Ω, any A ∈ F is called an event.

• One more measurable space (X,B) that is interpreted as the phase space; it is
assumed that any single-point set is measurable, that is {x} ∈ B for all x ∈ X.
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• A two-parametric family (Ms
t )s≤t of σ-algebras of events such that Mσ

τ ⊆ Ms
t

if 0 ≤ s ≤ σ ≤ τ ≤ t; for fixed s ≥ 0, the minimal σ-algebra of events containing
all the σ-algebras Ms

t for t ≥ s will be denoted by Ms.
• AnX-valued function (x(t, ω))t≥0,ω∈Ω possessing the property: {ω ∈ Ω : x(t, ω) ∈
Γ} is an event from Mt

t for all t ≥ 0 and Γ ∈ B; as a rule, the second argu-
ment of this function will be omitted and the event above will be written briefly
{x(t) ∈ Γ}; the minimal σ-algebra of events containing all the events of the kind
{x(r) ∈ Γ}, r ∈ [s, t],Γ ∈ B is denoted by N s

t ; it is clear that N s
t ⊆ Ms

t for all
0 ≤ s ≤ t; the notation N s for s ≥ 0 will be used for the minimal σ-algebra of
events containing N s

t for all t ∈ [s,+∞).
• For any pair of s ≥ 0 and x ∈ X, a probability measure Ps,x on the σ-algebra

Ms.

Suppose that the following conditions are fulfilled:
(i) Ps,x({x(s) = x}) = 1 for all s ≥ 0 and x ∈ X;
(ii) for fixed s ≥ 0, t ≥ s and Γ ∈ B, the function (Ps,x({x(t) ∈ Γ}))x∈X is B-

measurable;
(iii) the equality Ps,x({x(t) ∈ Γ}/Ms

τ ) = Pτ,x(τ)({x(t) ∈ Γ}) holds true Ps,x-almost
surely for all 0 ≤ s < τ < t, x ∈ X and Γ ∈ B.

Then we say that a Markov process is given and denote it by (x(t),Ms
t ,Ps,x).

Sometimes we will say briefly: a Markov process (x(t))t≥0 is given in the phase space
(X,B). The function in (ii) will be denoted by P (s, x, t,Γ) for 0 ≤ s ≤ t, x ∈ X and
Γ ∈ B, that is Ps,x({x(t) ∈ Γ}) = P (s, x, t,Γ); it is called transition probability of the
Markov process (x(t),Ms

t ,Ps,x). As a function of the fourth argument it is a probability
measure on (X,B). Moreover, the property (iii) implies the following equality

P (s, x, t,Γ) =

∫
X

P (τ, z, t,Γ)P (s, x, τ, dz) (1)

valid for all 0 ≤ s < τ < t, x ∈ X and Γ ∈ B. This equality is called the Kolmogorov–
Chapman equation.

The values of the measure Ps,x on N s are completely determined by transition prob-
ability of the process. It is true for events of the kind

⋂n
k=1{x(tk) ∈ Γk} with an integer

n ≥ 1, instants of time s < t1 < . . . < tn and sets Γ1,Γ2, . . . ,Γn from B, since by
induction on n, one can easily arrive at the equality

Ps,x(

n⋂
k=1

{x(tk) ∈ Γk}) =

=

∫
Γ1

P (s, x, t1, dy1)

∫
Γ2

P (t1, y1, t2, dy2) . . .

∫
Γn

P (tn−1, yn−1, tn, dyn).

Now, it is an easy exercise to verify that the equality

Ps,x(A/Ms
τ ) = Pτ,x(τ)(A)

is held true Ps,x-almost surely for all 0 ≤ s < τ and A ∈ N τ . Let Es,x be the sym-
bol for the expectation operator with respect to Ps,x. Then the previous equality im-
plies the following one Es,x(ξ/Ms

τ ) = Eτ,x(τ)(ξ) valid Ps,x-almost surely for all bounded
N τ -measurable random variables ξ. If additionally an Ms

τ -measurable bounded random
variable η is given, we can assert that the equality

Es,x(ξη) = Es,x(ηEτ,x(τ)(ξ)) (2)

holds true. This formula is useful.
As we have just seen, the measure Ps,x on N s is determined by transition probability

of the process. Suppose now that we have managed to solve the Kolmogorov–Chapman
equation written for a given measurable space (X,B) and ask ourselves whether there
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exists a Markov process in that space such that its transition probability coincides with
that solution. The answer is positive if X is a complete separable metric space and B is
the σ-algebra of all Borel measurable subsets of X. The proof of this statement is based
on the well-known Kolmogorov theorem on consistent finite-dimensional distributions.

1.2. Continuity conditions. Two Markov processes in the same phase space (given,
maybe, on different spaces of elementary events) are called stochastically equivalent if
they have the same transition probability. So, any solution to the Kolmogorov–Chapman
equation generates (if any) a class of stochastically equivalent Markov processes. It is
natural to look for such a process in that class whose trajectories (that is, the functions
x(·, ω) for ω ∈ Ω) share as nice properties as possible. In the following statement, some
condition imposed on transition probability of a Markov process in a complete metric
space turns out to provide the existence of a stochastically equivalent process whose
trajectories are continuous functions.

For a metric space X, we denote by Br(x) (r > 0 and x ∈ X) an open ball in X of
radius r and its center located at x; Br(x)

c means the complement of Br(x).
Theorem. Any Markov process in a complete metric space (X,B) whose transition

probability satisfies the condition

sup
0≤s<t≤s+h≤T

sup
x∈X

P (s, x, t, Bε(x)
c) = o(h), as h ↓ 0,

for all fixed ε > 0 and T > 0 is stochastically equivalent to a Markov process with its
trajectories being continuous functions.

A Markov process in a metric space (X,B) with continuous trajectories will be called
continuous. For such a process it is natural to choose the space C([0,+∞), X) of all
X-valued continuous functions defined on [0,+∞) as the space of elementary events, so
that ω = (ω(s))s≥0. The function (x(t, ω))t≥0,ω∈Ω is defined by x(t, ω) = ω(t); the σ-
algebra Ms

t for 0 ≤ s ≤ t <∞ coincides with the minimal σ-algebra of events containing
any set of the kind {ω(·) : ω(r) ∈ Γ} with r ∈ [s, t] and Γ ∈ B; for s ≥ 0, we have
Ms =

∨
t≥s Ms

t ; for s ≥ 0 and x ∈ X, the measure Ps,x on Ms is induced by the

corresponding one of a given continuous Markov process in (X,B).
1.3. Homogeneous Markov processes. A Markov process (x(t),Ms

t ,Ps,x) in a
phase space (X,B) is called homogeneous if its transition probability P (s, x, t,Γ), s ≤
t, x ∈ X and Γ ∈ B, possesses the following property: for all t ≥ 0, x ∈ X and Γ ∈ B,
the function (P (s, x, s + t,Γ))s≥0 does not depend on s. If it is so, we put P (t, x,Γ) =
P (s, x, s+t,Γ) for t ≥ 0, x ∈ X and Γ ∈ B. This function satisfies the following conditions
(1IΓ(x) for x ∈ X and Γ ∈ B is the notation for an indicator function):

• P (0, x,Γ) = 1IΓ(x) for x ∈ X and Γ ∈ B;
• for fixed t ≥ 0 and Γ ∈ B, the function (P (t, x,Γ))x∈X is B-measurable;
• for fixed t ≥ 0 and x ∈ X, the function (P (t, x,Γ))Γ∈B is a probability measure
on (X,B);

• for fixed s > 0, t > 0, x ∈ X and Γ ∈ B, the equality

P (s+ t, x,Γ) =

∫
X

P (s, x, dy)P (t, y,Γ) (10)

holds true (this is a homogeneous version of the Kolmogorov–Chapman equa-
tion).

For a homogeneous process, there is no sense in fixing any initial instant of time in
the measure Ps,x : by a shift, it can always be chosen being equal to 0. For example, for
0 ≤ s < t, x ∈ X and Γ ∈ B, we have

Ps,x({x(t) ∈ Γ}) = P0,x({x(t− s) ∈ Γ}) = P (t− s, x,Γ).
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If 0 ≤ s < t1 < t2 < . . . < tn, x ∈ X, Γ1 ∈ B, . . . ,Γn ∈ B, then

Ps,x(

n⋂
k=1

{x(tk) ∈ Γk}) =

=

∫
Γ1

P (t1 − s, x, dy1)

∫
Γ2

P (t2 − t1, y1, dy2) . . .

∫
Γn

P (tn − tn−1, yn−1, dyn) =

= P0,x(

n⋂
k=1

{x(tk − s) ∈ Γk}).

For a homogeneous Markov process (x(t),Ms
t ,Ps,x) in (X,B), we put Px(·) = P0,x(·)

for x ∈ X and Mt = M0
t for t ≥ 0. Then the following conditions are fulfilled:

(i0) Px({x(0) = x}) = 1 for x ∈ X;
(ii0) for fixed t ≥ 0 and Γ ∈ B, the function P (t, x,Γ) = Px({x(t) ∈ Γ}), x ∈ X, is a

B-measurable one;
(iii0) for all t ≥ 0, s ≥ 0, x ∈ X and Γ ∈ B, the relation

Px({x(s+ t) ∈ Γ}/Mt) = P (s, x(t),Γ)

holds true Px-almost surely.
The notation (x(t),Mt,Px) will be used for a homogeneous Markov process.
1.4. Examples and exercises. In any example below, a certain function g(t, x, y), t >

0, x ∈ X and y ∈ X, is defined for X being either a d-dimensional Euclidean space Rd or
some part of it with the σ-algebra B of all Borel measurable subsets of X. The following
problem is proposed to the reader: make sure that the function P (t, x,Γ) defined for
t > 0, x ∈ X and Γ ∈ B by the Lebesgue integral

P (t, x,Γ) =

∫
Γ

g(t, x, y)dy

can serve as transition probability of a homogeneous continuous Markov process in X.
The function g is then called transition probability density of the process.

1.4.A. For t > 0, x ∈ Rd and y ∈ Rd, we put

g0(t, x, y) = (2πt)−d/2 exp{−|y − x|2/2t}.
A homogeneous continuous Markov process in Rd generated by this transition probability
density is called Brownian motion or Wiener process.

1.4.B. Let X = [0,+∞). We set

g(t, x, y) = (2πt)−1/2[exp{−(y − x)2/2t}+ exp{−(y + x)2/2t}]
for t > 0, x ≥ 0 and y ≥ 0. A homogeneous continuous Markov process in X with this
transition probability density is called Brownian motion in R1 reflected at the origin.

1.4.C. For fixed q ∈ R1, we put

g(t, x, y) = (2πt)−1/2[exp{−(y − x)2/2t}+ q sign y exp{−(|y|+ |x|)2/2t}]
for all t > 0, x ∈ R1, y ∈ R1 (we believe that sign 0 = 0). This function is discontinuous
(if q ̸= 0) at the point y = 0 : we have g(t, x, 0±) = 1±q√

2πt
exp{−x2/2t} and g(t, x, 0) =

1√
2πt

exp{−x2/2t}. Nevertheless it satisfies the Kolmogorov–Chapman equation

g(s+ t, x, y) =

∫
R1

g(s, x, z)g(t, z, y)dz, s > 0, t > 0, x ∈ R1, y ∈ R1,

as well as the relation ∫
R1

g(t, x, y)dy = 1, t > 0, x ∈ R1.

It remains to observe that all the values of the function g are non-negative iff q ∈ [−1, 1]
and that the continuity condition is fulfilled in this case. Hence, for each q ∈ [−1, 1] there
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exists a continuous homogeneous Markov process in R1 whose transition probability
density is given by the function g. If q = 0, we have one-dimensional Brownian motion.
Any process for q ∈ [−1, 1] \ {0} is called skew Brownian motion.

1.4.D. For a fixed unit vector ν ∈ Rd (d ≥ 2 in this example), we set S = {x ∈ Rd :
(x, ν) = 0}. Let a continuous bounded function (q(x))x∈S taking on its values from the
interval [−1, 1] be given. Making use of the function g0 from 1.4.A, we define a function
g of the arguments t > 0, x ∈ Rd and y ∈ Rd by setting

g(t, x, y) = g0(t, x, y) +

∫ t

0

dτ

∫
S

g0(τ, x, z)
∂g0(t− τ, z, y)

∂νz
q(z)dσz,

where the inner integral on the right-hand side is a surface integral (since S is a (d− 1)-
dimensional subspace of Rd, that integral is nothing else but the Lebesgue integral in
Rd−1) and ∂

∂νz
means the derivative of the function (g0(t− τ, z, y))z∈Rd (for fixed τ < t

and y ∈ Rd) in the direction ν, that is

∂g0(t− τ, z, y)

∂νz
=

(y − z, ν)

t− τ
g0(t− τ, z, y), 0 ≤ τ < t, z ∈ Rd, y ∈ Rd.

It is clear that g(t, x, y) = g0(t, x, y) for y ∈ S. In the case of y /∈ S, the integrals in the
formula for g are well-defined as follows from the relations (we use the designations ∥q∥ for
supx∈S |q(x)| and x̃ for the orthogonal projection of x ∈ Rd on S, that is x̃ = x−ν(x, ν)):∫ t

0

dτ

∫
S

g0(τ, x, z)
∣∣∣∂g0(t− τ, z, y)

∂νz

∣∣∣|q(z)|dσz ≤

≤ ∥q∥
∫ t

0

|(y, ν)| exp{−(x, ν)2/2τ − (y, ν)2/2(t− τ)}√
2πτ

√
2π(t− τ)3

dτ ·

·
∫
S

exp{−|z − x̃|2/2τ − |ỹ − z|2/2(t− τ)}
(2πτ)(d−1)/2(2π(t− τ))(d−1)/2

dσz =

= ∥q∥exp{−(|(x, ν)|+ |(y, ν)|)2/2t}√
2πt

exp{−|ỹ − x̃|2/2t}
(2πt)(d−1)/2

≤

≤ ∥q∥exp{−|y − x|2/2t}
(2πt)d/2

= ∥q∥g0(t, x, y).

Similar reasons show that∫ t

0

dτ

∫
S

g0(τ, x, z)
∂g0(t− τ, z, y)

∂νz
q(z)dσz ≥ −∥q∥g0(t, x, y).

Therefore, for all t > 0, x ∈ Rd and y ∈ Rd, the inequalities

(1− ∥q∥)g0(t, x, y) ≤ g(t, x, y) ≤ (1 + ∥q∥)g0(t, x, y)
hold true. So, the values of the function g are non-negative because of ∥q∥ ≤ 1.

Now, the reader should prove that the function g satisfies the Kolmogorov–Chapman
equation and verify that the continuity condition is fulfilled. So, there exists a continuous
homogeneous Markov process in Rd whose transition probability density is given by the
function g. This process is called Brownian motion with a membrane located on the
hyperplane S; the function (q(x))x∈S is called the permeability coefficient.

1.4.E. Let X = [0,+∞). For t > 0, ρ ∈ X and r ∈ X, we set

g(t, ρ, r) =
r

t
exp{−(ρ2 + r2)/2t}I0(ρr/t),

where (I0(z))z∈R1 is a modified Bessel function of zero order, that is

I0(z) =

∞∑
n=0

(
z

2
)2n/(n!)2.
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A continuous homogeneous Markov process in X with the function g as its transition
probability density is a representative of the whole class of processes that are called
Besselean.

1.5. Comments and references. We keep to Dynkin’s point of view on the notion
of a Markov process (see [1]), according to which neither an initial instant of time, nor
initial location of the process is fixed. On the contrary, every instant of time and every
point of the phase space can serve as initial data for the process in usual sense. So,
a whole class of Markov processes in usual sense is determined by the Definition 1.1.
Everything concerning the distribution of such a process is completely determined by
the corresponding transition probability.

The continuity condition was established by E.B.Dynkin [2] and independently by
J.R.Kinney [3].
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Lesson 2. Diffusion processes.

2.1. Introduction. In this lesson, the phase space of Markov processes will be a
d-dimensional Euclidean space Rd with the σ-algebra B of all Borel measurable subsets
of Rd. Every Markov process in this space is generated by a certain solution to the
Kolmogorov–Chapman equation, that is, such a function P (s, x, t,Γ) of the arguments
s ≥ 0, x ∈ Rd, t > s and Γ ∈ B that possesses the following properties:

1) it is a B-measurable function of x ∈ Rd for fixed s < t and Γ ∈ B;
2) it is a probability measure of Γ ∈ B for fixed s < t and x ∈ Rd;
3) the equality P (s, x, t,Γ) =

∫
Rd P (τ, y, t,Γ)P (s, x, τ, dy) holds true for all 0 ≤ s <

τ < t, x ∈ Rd and Γ ∈ B.
The equality in 3) is called the Kolmogorov–Chapman equation. It expresses a general

principle, according to which stochastic systems with the Markov property are evolving
in time. The equation is non-linear, and it is a problem how to describe these and those
classes of its solutions.

At the end of 1920s, A.N.Kolmogorov noticed that some assumptions on the behav-
ior of the process desired on small intervals of time makes it possible to reduce the
Kolmogorov–Chapman equation to a certain linear problem. He managed to point out
several classes of Markov processes. One of them became later to be called diffusion
processes.

2.2. Definition. Recall that an open ball in Rd of radius r > 0 with its center located
at the point x ∈ Rd is denoted by Br(x); its complement to Rd is designated by Br(x)

c.
Let P (s, x, t,Γ), 0 ≤ s < t, x ∈ Rd, Γ ∈ B, be a solution to the Kolmogorov–

Chapman equation. We say that this solution is transition probability of a diffusion
process in (Rd,B) if the following conditions are fulfilled:

A) for all s ≥ 0, x ∈ Rd and ε > 0 the relation

lim
t↓s

1

t− s

∫
Bε(x)c

P (s, x, t, dy) = 0

holds;

https://doi.org/10.1090/S0002-9947-1953-0053428-1
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B) for all s ≥ 0, x ∈ Rd and some ε > 0 the limit

lim
t↓s

1

t− s

∫
Bε(x)

(y − x)P (s, x, t, dy)

exists;
C) for all s ≥ 0, x ∈ Rd, θ ∈ Rd and some ε > 0 the limit

lim
t↓s

1

t− s

∫
Bε(x)

(y − x, θ)2P (s, x, t, dy)

exists.
One can easily observe that under the condition A), the existence of the limits in the

conditions B) and C) for some ε > 0 implies their existence for any ε > 0, and the fact
that those limits do not depend on ε. So, the limit in B) determines an Rd-valued function
a(s, x), s ≥ 0, x ∈ Rd, while the limit in C) determines a linear operator b(s, x), s ≥
0, x ∈ Rd, for which that limit can be written as the quadratic form (b(s, x)θ, θ), θ ∈ Rd;
it is clear that this form is non-negative definite. The function a(s, x), s ≥ 0, x ∈ Rd, is
called drift vector and the function b(s, x), s ≥ 0, x ∈ Rd is called diffusion operator and
they all together are called local characteristics of the corresponding diffusion process.

This terminology is connected with the fact that diffusion processes are intended to
serve as a mathematical model for describing the motion of a diffusing particle suspended
in a liquid or a gas. Such a particle takes part in the motions of two kinds. One of them
is caused by some streams in the liquid or winds in the gas. The local velocity of this
macroscopic motion is given by the drift vector. The other kind of motion is microscopic.
It is the result of collisions between our particle and molecules of the liquid or gas. The
diffusion operator characterizes locally the intensity of that molecular motion in different
directions.

The integrals in the conditions B) and C) are taken over the balls because any moments
of the process a priory do not suppose to exist. But if those moments do exist, then the
corresponding integrals can be taken over the whole Rd. In that case, the following
conditions are more convenient to be checked in order to verify that a given transition
probability determines some diffusion process.

Transition probability P (s, x, t, dy), 0 ≤ s < t, x ∈ Rd generates a diffusion process
if the following conditions are fulfilled:

A′) for some δ > 0 and all s ≥ 0, x ∈ Rd, the relation

lim
t↓s

1

t− s

∫
Rd

|y − x|2+δP (s, x, t, dy) = 0

holds true;
B′) for all s ≥ 0 and x ∈ Rd, the limit

lim
t↓s

1

t− s

∫
Rd

(y − x)P (s, x, t, dy)

exists;
C′) for all s ≥ 0, x ∈ Rd and θ ∈ Rd, the limit

lim
t↓s

1

t− s

∫
Rd

(y − x, θ)2P (s, x, t, dy)

exists.
It is evident that the limits in B′) and C ′) coincide with a(s, x) and (b(s, x)θ, θ),

respectively.
2.3. Kolmogorov’s backward and forward equations. Let transition probability

P (s, x, t, dy), 0 ≤ s < t, x ∈ Rd, satisfying the conditions A)–C) be given. We first prove
the following auxiliary result.
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Proposition. If (f(x))x∈Rd is an arbitrary bounded twice continuously differentiable
function with real values, then for all s ≥ 0 and x ∈ Rd, the equality

lim
t↓s

1

t− s

[ ∫
Rd

f(y)P (s, x, t, dy)− f(x)
]
= (a(s, x), f ′(x)) +

1

2
Tr(b(s, x)f ′′(x)) (1)

holds true.
Proof. The boundedness of the function (f(x))x∈Rd and the condition A) imply the

fact that the left-hand side of (1) is equal to the expression

lim
t↓s

1

t− s

∫
Bε(x)

[f(y)− f(x)]P (s, x, t, dy)

for all ε > 0. Applying now Taylor’s formula and making use of the conditions B) and
C), we arrive at the conclusion that this expression can be written as follows

(a(s, x), f ′(x)) +
1

2
Tr(b(s, x)f ′′(x)) +Rε,

where absolute value of Rε for ε > 0 can be estimated by the expression

1

2
sup

z∈Bε(x)

∥f ′′(z)− f ′′(x)∥ lim
t↓s

1

t− s

∫
Bε(x)

|y − x|2P (s, x, t, dy) =

=
1

2
sup

z∈Bε(x)

∥f ′′(z)− f ′′(x)∥ · Tr(b(s, x))

(we have used here the operator norm of the gessian f ′′(·)). Since the function (f ′′(x))x∈Rd

is continuous, we have

lim
ε→0

|Rε| ≤
1

2
Tr(b(s, x)) lim

ε→0
sup

z∈Bε(x)

∥f ′′(z)− f ′′(x)∥ = 0.

This completes the proof.
Theorem 1. Suppose that a given transition probability P (s, x, t, dy), x ∈ Rd, 0 ≤

s < t, corresponds to a diffusion process with its drift vector and diffusion operator being
continuous functions. Let (φ(x))x∈Rd be such a bounded continuous function with real
values that the function u(s, x) of the arguments (s, x) ∈ [0, t) × Rd (for fixed t > 0)
defined by

u(s, x) =

∫
Rd

φ(y)P (s, x, t, dy)

is twice differentiable with respect to the argument x ∈ Rd continuously with respect to the
pair (s, x). Then this function is also differentiable with respect to s ∈ [0, t) and satisfies
the equation

u′s(s, x) + (a(s, x), u′x(s, x)) +
1

2
Tr(b(s, x)u′′xx(s, x)) = 0 (2)

in the domain (s, x) ∈ [0, t)× Rd and also the final condition

lim
s↑t

u(s, x) = φ(x) (3)

for all x ∈ Rd is fulfilled.
Proof. Let s ∈ [0, t) and ∆s > 0 be such that s+∆s < t. Then using the Kolmogorov–

Chapman equation, we can write down the equality

1

∆s
[u(s, x)− u(s+∆s, x)] =

1

∆s

∫
Rd

[u(s+∆s, z)− u(s+∆s, x)]P (s, x, s+∆s, dz).

Applying the proposition to the function (u(s+∆s, x))x∈Rd leads us to the equation (2).
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Notice now that for x ∈ Rd and any ε > 0, we have

lim
s↑t

|u(s, x)− φ(x)| ≤ lim
s↑t

∫
Bε(x)

|φ(y)− φ(x)|P (s, x, t, dy) ≤ sup
y∈Bε(x)

|φ(y)− φ(x)|.

The last quantity converges to 0, as ε ↓ 0 for fixed x ∈ Rd. The theorem has been proved.
Equation (2) is called Kolmogorov’s backward equation. It is a linear second order

partial differential equation of parabolic type (for fixed s ≥ 0 and x ∈ Rd, the operator
b(s, x) is non-negative definite). We have thus seen that the assumption on the process to
be a diffusion one plus some additional conditions allow us to linearize the Kolmogorov–
Chapman equation.

Let an orthonormal basis in Rd be fixed. Denote by xj for j ∈ {1, 2, . . . , d} the coor-
dinates of x ∈ Rd in that basis. The matrix of the operator b(s, x) in that basis consists
of the entries denoted by bjk(s, x) for j, k ∈ {1, 2, . . . , d}. The Kolmogorov backward
equation in coordinates form is written as follows

∂u

∂s
(s, x) +

d∑
j=1

aj(s, x)
∂u

∂xj
(s, x) +

1

2

d∑
j,k=1

bjk(s, x)
∂2u

∂xj∂xk
(s, x) = 0. (2′)

Suppose now that transition probability of a diffusion process is absolutely continuous
with respect to Lebesgue measure in Rd, that is

P (s, x, t,Γ) =

∫
Γ

G(s, x, t, y)dy, 0 ≤ s < t, x ∈ Rd, Γ ∈ B.

The function G is called transition probability density of the process. It turns out
that under some conditions, the function G(s, x, t, y) as a function of the arguments
t ∈ (s,+∞) and y ∈ Rd (for fixed s ≥ 0 and x ∈ Rd) satisfies some partial differential
equation that is formally conjugate to equation (2′).

Theorem 2. Suppose that transition probability density G(s, x, t, y), 0 ≤ s < t, x ∈ Rd

and y ∈ Rd, of a diffusion process is such that the limits in conditions B) and C) exist
locally uniformly with respect to x ∈ Rd and let the following derivatives exist and be
continuous in (t, y) ∈ (s,+∞)× Rd

∂G(s, x, t, y)

∂t
,
∂(aj(t, y)G(s, x, t, y))

∂yj
,
∂2(bjk(t, y)G(s, x, t, y))

∂yj∂yk

for all j and k from the set {1, 2, . . . , d}. Then for fixed s ≥ 0 and x ∈ Rd, the function
G(s, x, t, y), (t, y) ∈ (s,+∞)× Rd, satisfies the following equation

∂G(s, x, t, y)

∂t
+

d∑
j=1

∂(aj(t, y)G(s, x, t, y))

∂yj
− 1

2

d∑
j,k=1

∂2(bjk(t, y)G(s, x, t, y))

∂yj∂yk
= 0. (4)

Proof. Let (φ(x))x∈Rd be a real-valued compactly supported and twice continuously
differentiable function. We have∫

Rd

φ(y)
∂G(s, x, t, y)

∂t
dy =

= lim
∆t↓0

1

∆t

[ ∫
Rd

φ(y)G(s, x, t+∆t, y)dy −
∫
Rd

φ(y)G(s, x, t, y)dy
]
=

= lim
∆t↓0

1

∆t

∫
Rd

G(s, x, t, y)
[ ∫

Rd

G(t, y, t+∆t, z)(φ(z)− φ(y))dz
]
dy.

Our proposition and the assumptions of Theorem 2 allow us to pass to the limit here.
As a result, we obtain the equality∫

Rd

φ(y)
∂G(s, x, t, y)

∂t
dy =

∫
Rd

G(s, x, t, y)[(a(t, y), φ′(y)) +
1

2
Tr(b(t, y)φ′′(y))]dy.
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Integrating here by part leads us to equation (4). The theorem has just been proved.
Equation (4) is called Kolmogorov’s forward equation. In the literature closer to

physics, it is called the Fokker–Planck equation.
The results of Kolmogorov described above indicate a path by which one may hope to

solve the problem of the existence of a diffusion process with previously specified its local
characteristics. The main station on this path is the investigation of the Cauchy problem
(2) – (3). In the next lesson some classical results on the existence and uniqueness of a
solution to this Cauchy problem will be formulated.

Remark. All the results formulated above can be obviously reformulated in the case
of a diffusion process being homogeneous.

In particular, the local characteristics of a homogeneous diffusion process (that is, its
drift vector and its diffusion operator) do not depend on time. If P (t, x, dy),
t > 0, x ∈ Rd, is transition probability of such a process, then under some assumptions on
a given continuous bounded function (φ(x))x∈Rd , the function u(t, x) =

∫
Rd φ(y)P (t, x, dy),

t > 0, x ∈ Rd, satisfies the equation

u′t(t, x)− (a(x), u′x(t, x))−
1

2
Tr(b(x)u′′xx(t, x)) = 0 (20)

in the domain (t, x) ∈ (0,+∞)× Rd and also the initial condition

lim
t↓0

u(t, x) = φ(x) (30)

for all x ∈ Rd is fulfilled.
2.4. Examples and exercises.
2.4.A. Make sure that Brownian motion in Rd (see 1.4.A) is a diffusion process with

a(x) ≡ 0 and b(x) ≡ I, where I is an identity operator in Rd. Verify that for any
real-valued continuous bounded function (φ(x))x∈Rd , the function

u(t, x) =

∫
Rd

φ(y)g0(t, x, y)dy, t > 0, x ∈ Rd,

is a solution of the Cauchy problem (20)–(30) (equation (20) with a(x) ≡ 0 and b(x) ≡ I
is called the heat equation).

2.4.B. Let (x(t),Mt,Px) be a homogeneous continuous Markov process in R1 called
skew Brownian motion (see 1.4.C). Verify that the following equalities∫

R1

(y − x)g(t, x, y)dy = q

∫ t

0

exp{−x2/2τ} dτ√
2πτ

,∫
R1

(y − x)2g(t, x, y)dy = t− 2qx

∫ t

0

exp{−x2/2τ} dτ√
2πτ

are fulfilled for all t > 0 and x ∈ R1. Show that for any x ∈ R1

lim
t↓0

1

t

∫
R1

(y − x)2g(t, x, y)dy = 1,

lim
t↓0

1

t

∫
R1

(y − x)g(t, x, y)dy = qδ(x),

where (δ(x))x∈R1 is Dirac’s δ-function. This means that skew Brownian motion for q ̸= 0
is not a diffusion process in the sense of definition in Section 2.2, but it can be treated as
a diffusion process in some generalized sense. The same concerns also the next example.

2.4.C. Consider Brownian motion in Rd with a membrane on a given hyperplane (see
1.4.D; we use here the notation from there). Prove that for all t > 0, x ∈ Rd and θ ∈ Rd,
the following relations∫

Rd

(y − x, θ)g(t, x, y)dy = (ν, θ)

∫ t

0

dτ

∫
S

g0(τ, x, y)q(y)dσy,
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Rd

(y − x, θ)2g(t, x, y)dy = t|θ|2 + 2(ν, θ)

∫ t

0

dτ

∫
S

g0(τ, x, y)(y − x, θ)q(y)dσy

are held. Show that these relations imply the following ones

lim
t↓0

1

t

∫
Rd

(y − x, θ)2g(t, x, y)dy = |θ|2,

lim
t↓0

1

t

∫
Rd

(y − x, θ)g(t, x, y)dy = (ν, θ)q(x)δS(x),

where (δS(x))x∈Rd is a generalized function whose action on a test function (φ(x))x∈Rd

is given as follows ⟨δS , φ⟩ =
∫
S
φ(x)dσ.

2.5. Comments and references. A.N.Kolmogorov in [4] pointed out a class of
Markov processes that became later known as diffusion processes. In that paper, the
backward and forward equations were derived. The first theorems on the existence and
uniqueness were obtained by W.Feller [5]. Since that time many articles and books have
been devoted to the theory of diffusion processes, for example [6], [7], [8], [9], [10].
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Lesson 3. The Kolmogorov backward equation.
3.1. Introduction. The main question our lessons address is: what conditions

must be imposed on given functions (a(s, x))(s,x)∈DT
and (b(s, x))(s,x)∈DT

with their

values in Rd and L+(Rd), respectively, so that these functions can serve as the local
characteristics of a diffusion process in Rd (we have just used the notation DT for the
set [0, T ] × Rd and L+(Rd) for the set of all linear symmetric operators on Rd being
non-negative definite). Kolmogorov’s results expounded in the previous lesson inspire
us with the ideas of looking for the process desired among solutions of the Cauchy
problem (2)–(3) of Lesson 2. Fortunately, in the theory of partial differential equations
of parabolic type there are some assertions that formulate exact conditions on those
given functions that guarantee the existence of the so-called fundamental solution of the
associated Kolmogorov backward equation. With the help of that solution a classical
solution to the Cauchy problem for that equation can be constructed and it turns out
to be unique in a certain class of functions. All these results allow one to conclude that
there exists a diffusion process in Rd whose transition probability density coincides with
the fundamental solution mentioned above. We call such a process classical diffusion. It
is clear that any notion of a generalized (non-classical) solution to the Cauchy problem
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(2)–(3) of Lesson 2 may determine a process that is diffusion only in some generalized
sense. Two examples of such a kind can be found in the previous lessons.

3.2. Fundamental solutions. We are given by an Rd-valued function (a(s, x))(s,x)∈DT

and an L+(Rd)-valued function (b(s, x))(s,x)∈DT
. Fix an orthonormal basis in Rd and de-

note by aj(s, x) for j = 1, 2, . . . , d the coordinates of the vector a(s, x) in that basis and
by bjk(s, x) for j and k from the set {1, 2, . . . , d} the entries of the matrix of the operator
b(s, x) in the same basis. Suppose that these functions possess the following properties:

(i) there exist constants c1 and c2, 0 < c1 ≤ c2, such that for all θ ∈ Rd and (s, x) ∈
DT , the inequalities

c1|θ|2 ≤ (b(s, x)θ, θ) ≤ c2|θ|2

are held;
(ii) for all (s, x) ∈ DT , (t, y) ∈ DT and integers j and k from the set {1, 2, . . . , d}, the

inequality

|bjk(s, x)− bjk(t, y)| ≤ K(|y − x|α + |t− s|α/2)
holds true with some constants α ∈ (0, 1] and K > 0;

(iii) for all j ∈ {1.2. . . . , d} the function (aj(s, x))(s.x)∈DT
is continuous bounded and

satisfies the inequality

|aj(s, x)− aj(s, y)| ≤ K|y − x|α, s ∈ [0, T ], x ∈ Rd, y ∈ Rd.

Under these conditions, the so-called fundamental solution g(s, x, t, y), 0 ≤ s < t ≤
T, x ∈ Rd, y ∈ Rd, of the equation

∂u

∂s
(s, x) +

d∑
j=1

aj(s, x)
∂u

∂xj
(s, x) +

1

2

d∑
j,k=1

bjk(s, x)
∂2u

∂xj∂xk
(s, x) = 0 (1)

exists, as is formulated in Theorem 1 below. We now define the notion of a fundamental
solution of equation (1).

Definition. A continuous function g(s, x, t, y) of the arguments (s, x) ∈ DT and
(t, y) ∈ DT for s < t is called a fundamental solution of equation (1) if as a function of
(s, x) for fixed (t, y) it satisfies equation (1) in the domain (s, x) ∈ [0, t)×Rd and for an
arbitrary continuous bounded function (φ(x))x∈Rd , the relation

lim
s↑t

∫
Rd

g(s, x, t, y)φ(y)dy = φ(x), x ∈ Rd, (2)

holds true.
Theorem 1. Let an Rd-valued function (a(s, x))(s,x)∈DT

and an L+(Rd)-valued func-
tion (b(s, x))(s,x)∈DT

be given. Suppose that they satisfy the conditions (i)–(iii). Then

there exists a fundamental solution g(s, x, t, y), 0 ≤ s < t ≤ T, x ∈ Rd, y ∈ Rd, of
equation (1) satisfying the inequality

|Dl
sD

m
x g(s, x, t, y)| ≤ L(t− s)−

d+2l+m
2 exp{−µ |y − x|2

t− s
} (3)

for all 0 ≤ s < t ≤ T, x ∈ Rd and y ∈ Rd with some positive constants L > 0, µ > 0 and
non-negative integers l and m being such that 2l +m ≤ 2; here Dl

s means the derivative
of the order l with respect to the argument s and Dm

x means any partial derivative of the
order m with respect to the argument x.

Remark. The so-called parametrix method for constructing the fundamental solution
in Theorem 1 is used. And it turns out that the constant µ in (3) can be arbitrarily chosen
from the interval (0,κ/2T ), where κ is defined as follows

κ = inf
(s,x)∈DT

min
θ∈Rd,|θ|=1

(b(s, x)−1θ, θ).
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The conditions of Theorem 1 imply the inequality κ > 0. Therefore, if a continuous
real-valued function (φ(x))x∈Rd satisfies the inequality

|φ(x)| ≤ B exp{β|x|2}, x ∈ Rd,

with some constants B > 0 and β ∈ (0,κ/2T ), then the integral∫
Rd

φ(y)g(s, x, t, y)dy

exists for all 0 ≤ s < t ≤ T and x ∈ Rd. As a function of the arguments (s, x) ∈
[0, t)×Rd, this integral determines a solution to the Cauchy problem (1)–(2). Moreover,
the following estimation

|
∫
Rd

g(s, x, t, y)φ(y)dy| ≤ const · exp{γ|x|2}

holds true for all 0 ≤ s < t ≤ T and x ∈ Rd with some constant γ > 0 depending only
on κ, β and T.

3.3. The maximum principle. One of the forms of the maximum principle for
the second order partial differential equations of parabolic type is formulated in the next
assertion (the designation D0

T is used for the set [0, T )× Rd).
Theorem 2. Assume that the coefficients of equation (1) are continuous bounded

functions in D0
T and let the condition

d∑
j,k=1

bjk(s, x)θ
jθk ≥ 0 (4)

be held for all (s, x) ∈ D0
T and all real numbers θ1, θ2, . . . , θd. Suppose further that a

continuous real-valued function (u(s, x))(s,x)∈DT
satisfies the following inequalities:

a)

∂u

∂s
(s, x) +

d∑
j=1

aj(s, x)
∂u

∂xj
(s, x) +

1

2

d∑
j,k=1

bjk(s, x)
∂2u

∂xj∂xk
(s, x) ≤ 0, (s, x) ∈ D0

T ;

b) u(s, x) ≥ −B exp{β|x|2}, (s, x) ∈ DT , with some positive constants B and β;
c) u(T, x) ≥ 0, x ∈ Rd.
Then u(s, x) ≥ 0 for all (s, x) ∈ DT .
Corollary. Under the conditions of Theorem 1, the fundamental solution g of equa-

tion (1) takes on only non-negative values.
3.4. The uniqueness theorem. Let continuous functions (f(s, x))(s,x)∈DT

and
(φ(x))x∈Rd with real values be given. Fix some t ∈ (0, T ] and consider the equality

∂u

∂s
(s, x) +

d∑
j=1

aj(s, x)
∂u

∂xj
(s, x) +

1

2

d∑
j,k=1

bjk(s, x)
∂2u

∂xj∂xk
(s, x) = −f(s, x) (5)

in the domain (s, x) ∈ [0, t)× Rd and the final condition

lim
s↑t

u(s, x) = φ(x) (6)

for all x ∈ Rd. One of the consequences from the maximum principle is the following
statement on the uniqueness of a solution to the Cauchy problem (5) – (6).

Theorem 3. Assume that the coefficients of equation (5) are continuous bounded
functions in the region DT and let inequality (4) be fulfilled for all (s, x) ∈ DT and all
real numbers θ1, θ2, . . . , θd. Then in the class of functions satisfying the inequality

|u(s, x)| ≤ B exp{β|x|2}, (s, x) ∈ [0, t]× Rd,
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with some positive constants B and β, there exists no more than one solution to the
Cauchy problem (5) – (6).

Corollary. Under the conditions of Theorem 1, the fundamental solution g satisfies
the relations: ∫

Rd

g(s, x, t, y)dy = 1 (7)

for all 0 ≤ s < t ≤ T and x ∈ Rd;∫
Rd

g(s, x, τ, z)g(τ, z, t, y)dz = g(s, x, t, y) (8)

for all 0 ≤ s < τ < t ≤ T, x ∈ Rd and y ∈ Rd.
This corollary together with that of Section 3.3 show that under the conditions of

Theorem 1, the fundamental solution g(s, x, t, y), 0 ≤ s < t ≤ T, x ∈ Rd, y ∈ Rd, is the
transition probability density of a Markov process in Rd. Inequality (3) for l = 0 and
m = 0 allows us assert that the continuity conddition from Lesson 1 is fulfilled for this
process. A question arises, whether this process is diffusion in Kolmogorov’s sense or
not. We will answer this question in the next section.

3.5. Solving the Cauchy problem (5)–(6). An Rd-valued function (a(s, x))(s,x)∈DT

and L+(Rd)-valued function (b(s, x))(s,x)∈DT
satisfying the conditions of Theorem 1 are

assumed to be given. As follows from Section 3.2, a solution to the homogeneous Cauchy
problem (5) – (6) (that is, with f(s, x) ≡ 0) in the domain (s, x) ∈ [0, t)× Rd (t ∈ (0, T ]
is fixed) can be given by the integral

u0(s, x) =

∫
Rd

g(s, x, t, y)φ(y)dy

if a given continuous function (φ(x))x∈Rd satisfies the inequality |φ(x)| ≤ B exp{β|x2|}
for all x ∈ Rd with some constants B > 0 and β ∈ (0,κ/2T ). It thus remains to find out
a solution to the Cauchy problem (5) – (6) with φ(x) ≡ 0. Assuming that the function
(f(s, x))(s,x)∈DT

satisfies the inequality |f(s, x)| ≤ B exp{β|x2|} with the same constants
as above, consider the integral

u1(s, x) =

∫ t

s

dτ

∫
Rd

g(s, x, τ, z)f(τ, z)dz, (s, x) ∈ [0, t)× Rd.

Using inequality (3) for l = 0,m = 0 and l = 0,m = 1, we can assert that the function
u1(s, x)(s,x)∈D0

t
is continuous and continuously differentiable with respect to x ∈ Rd. As

for the second derivatives with respect to x and the first derivative with respect to s,
their existences can be guaranteed under the following assumption on the function f : for
any x ∈ Rd there exists such δ > 0 that for all s ∈ [0, T ] and y ∈ Bδ(x), the inequality

|f(s, y)− f(s, x)| ≤ K|x− y|γ

holds true with some constants K > 0 and γ ∈ (0, 1]. In this case, the following formulae
are fulfilled

∂2u1
∂xj∂xk

(s.x) =

∫ t

s

dτ

∫
Rd

∂2g

∂xj∂xk
(s, x, τ, z)f(τ, z)dz,

∂u1
∂s

(s, x) = −f(s, x) +
∫ t

s

dτ

∫
Rd

∂g

∂s
(s, x, τ, z)f(τ, z)dz,

as it follows from the equalities∫
Rd

Dsg(s, x, t, y)dy ≡ 0 and

∫
Rd

Dm
x g(s, x, t, y)dy ≡ 0

for m = 1 and m = 2.
As a consequence, we have the following assertion.
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Theorem 4. Assume that the coefficients of equation (5) satisfy the conditions of The-
orem 1 and let given real-valued continuous functions (f(s, x))(s,x)∈DT

and (φ(x))x∈Rd

satisfy the inequalities

|f(s, x)| ≤ B exp{β|x|2}, |φ(x)| ≤ B exp{β|x|2}

for all s ∈ [0, T ] and x ∈ Rd with some positive constants B and β. Suppose, in addition,
that (f(s, x))(s,x)∈DT

is locally Hölder continuous in x ∈ Rd uniformly with respect to
s ∈ [0.T ]. Then a solution to the Cauchy problem (5) – (6) can be written as follows

u(s, x) =

∫
Rd

g(s, x, t, y)φ(y)dy +

∫ t

s

dτ

∫
Rd

g(s, x, τ, z)f(τ, x)dz, (s, x) ∈ D0
t .

Moreover, this solution satisfies the inequality

|u(s, x)| ≤ const exp{γ|x|2}, (s, x) ∈ Dt,

with some constant γ > 0.
Corollary. Under the assumptions of Theorem 1, the following relations are held for

all 0 ≤ s < t ≤ T, x ∈ Rd and θ ∈ Rd :∫
Rd

(y, θ)g(s, x, t, y)dy = (x, θ) +

∫ t

s

dτ

∫
Rd

(a(τ, y), θ)g(s, x, τ, y)dy, (9)

∫
Rd

(y, θ)2g(s, x, t, y)dy = (x, θ)2 +

∫ t

s

dτ

∫
Rd

(b(τ, y)θ, θ)g(s, x, τ, y)dy+

+2

∫ t

s

dτ

∫
Rd

(a(τ, y), θ)(y, θ)g(s, x, τ, y)dy. (10)

Proof consists in verifying the fact that the expression on the left-hand side of (9) (or
(10)) solves the same Cauchy problem (5)–(6) as the expression on the right-hand side
of (9) (or (10)) does. To verify this is proposed for the reader as an exercise.

One more exercise consists in proving the following relations being simple consequences
of (9) and (10):∫

Rd

(y − x, θ)g(s, x, t, y)dy =

∫ t

s

dτ

∫
Rd

g(s, x, τ, z)(a(τ, z), θ)dz (9′)

∫
Rd

(y − x, θ)2g(s, x, t, y)dy =

∫ t

s

dτ

∫
Rd

g(s, x, τ, z)(b(τ, z)θ, θ)dz+

+2

∫ t

s

dτ

∫
Rd

g(s, x, τ, z)(z − x, θ)(a(τ, z), θ)dz. (10′)

The final exercise in this lesson consists in proving the following statement.
Theorem 5. Let an Rd-valued function (a(s, x))(s,x)∈DT

and an L+(Rd)-valued func-
tion (b(s, x))(s,x)∈DT

be given such that they satisfy the conditions (i)–(iii). Then the

fundamental solution g(s, x, t, y), 0 ≤ s < t ≤ T, x ∈ Rd, y ∈ Rd of equation (1) can serve
as transition probability density of a diffusion process in Rd whose local characteristics
coincide with those given functions.

3.6. Comments and references. The parametrix method for constructing a fun-
damental solution of equation (1) is expounded in many books and papers, for example,
[1], [13], [14]. The reader can also find there various versions of the maximum principle
for that equation. The theorems of this section are taken mainly from [12].
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Lesson 4. Diffusion processes in irregular media.
4.1. Introduction. Let (x(t))t∈[0,T ] be a classical diffusion process in Rd with its

local characteristics being given functions (a(s, x))(s,x)∈DT
and (b(s, x))(s,x)∈DT

respec-

tively, Rd-valued and L+(Rd)-valued. Suppose that the vector field (a(s, x))(s,x)∈DT

generates a dynamical system (x0(t))t∈[0,T ] in the following sense: for every s ∈ [0, T )

and ξ ∈ Rd, we have

ẋ0(t) = a(t, x0(t)), t ∈ (s, T ], x0(s) = ξ. (1)

In this case, the process (x(t))t∈[0,T ] can be considered as the result of perturbing
the dynamical system (x0(t))t∈[0,T ] by some random factors that are described by the
operator-field (b(s, x))(s,x)∈DT

. Notice that those random factors generate a diffusion

process (ξ(t))t∈[0,T ] in Rd whose transition probability density g(s, x, t, y), 0 ≤ s < t ≤
T, x ∈ Rd, y ∈ Rd, is a fundamental solution of the equation

u′s(s, x) +
1

2
Tr(b(s, x)u′′xx(s, x)) = 0. (2)

An opposite view-point on the process (x(t))t∈[0,T ] consists in considering it as the result
of perturbing the process (ξ(t))t∈[0,T ] by the vector-field (a(s, x))(s,x)∈DT

. It turns out
that such a perturbation can be fulfilled for a vector-field that itself does not generate
any dynamical system of the kind (1). This lesson will be devoted to locally unbounded
perturbing vector-fields. In the next one we will see that such a perturbation is possible
even for generalized functions of a certain class.

4.2. Perturbation formulae. We use the notation of Introduction. Suppose that
the Markov processes (x(t))t∈[0,T ] and (ξ(t))t∈[0,T ] in Rd are classical diffusion. Transition

probability density g(s, x, t, y), 0 ≤ s < t ≤ T, x ∈ Rd, y ∈ Rd, of the process (ξ(t))t∈[0,T ]

coincides with the fundamental solution of equation (2). Denote by G(s, x, t, y) for 0 ≤
s < t ≤ T, x ∈ Rd and y ∈ Rd transition probability density of the process (x(t))t∈[0,T ].
It coincides with the fundamental solution of the equation

U ′
s(s, x) + (a(s, x), U ′

x(s, x)) +
1

2
Tr(b(s, x)U ′′

xx(s, x)) = 0. (3)

Theorem 4 from the previous lesson implies the following relations between the functions
g and G.

Theorem 1. For all 0 ≤ s < t ≤ T, x ∈ Rd and y ∈ Rd, the relations

G(s, x, t, y) = g(s, x, t, y) +

∫ t

s

dτ

∫
Rd

g(s, x, τ, z)(a(τ, z), G′
z(τ, z, t, y))dz

(4)

https://doi.org/10.1007/978-3-0348-7844-9
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G(s, x, t, y) = g(s, x, t, y) +

∫ t

s

dτ

∫
Rd

G(s, x, τ, z)(a(τ, z), g′z(τ, z, t, y))dz

are held true.
Each one of these equalities can be treated as an equation for the function G if the

function g is known. Of course, if the function (a(s, x))(s,x)∈DT
satisfies the conditions

of Theorem 1 from the previous lesson, then the function G can be constructed by the
parametrix method for equation (3). But any one of equations (4) can be solved under
the assumptions on the function (a(s, x))(s,x)∈DT

being not so strong.
Equations (4) are known in mathematics as the perturbations formulae. The first one

is an analogy to Kolmogorov’s backward equation, while the second one is analogous to
the Kolmogorov forward equation.

4.3. Diffusion processes with integrable drift vector. We are going to con-
struct a solution to the second one of equations (4) under the following assumptions
on a given L+(Rd)-valued function (b(s, x))(s,x)∈DT

and a given Rd-valued function
(a(s, x))(s,x)∈DT

: the first one is supposed to satisfy the conditions (i)–(ii) of Lesson
3 and the second one is supposed to be measurable and such that

∥a∥p,T =
(∫ T

0

dτ

∫
Rd

|a(τ, z)|pdz
)1/p

< +∞ (5)

for some p > d+ 2. We will see that the solution G(s, x, t, y) for 0 ≤ s < t ≤ T, x ∈ Rd

and y ∈ Rd is continuous and continuously dufferentiable with respect to x, but the
existence of the second derivatives is not guaranteed. So, the function G can be called a
generalized fundamental solution to equation (3) and the corresponding Markov process
turns out to be a diffusion one only in some generalized sense.

The following auxiliary result will be useful in constructing a solution to the second
equation in (4). Its proof is elementary. For fixed T > 0, C > 0, µ > 0 and β ∈ R1,
let HT (C, µ, β) be the designation for the class of all real-valued continuous functions
h(s, x, t, y) defined for 0 ≤ s < t ≤ T, x ∈ Rd and y ∈ Rd and being such that

|h(s, x, t, y)| ≤ C(t− s)−β exp{−µ|y − x|2/(t− s)}
for all 0 ≤ s < t ≤ T, x ∈ Rd and y ∈ Rd.

Lemma 1. Assume that hk ∈ HT (Ck, µ, βk) for k ∈ {1, 2} are given functions, where
µ > 0, Ck > 0 and βk ≤ 1

2 (d + 1), k ∈ {1, 2}, and let (f(s, x))(s,x)∈DT
be a real-valued

function such that

∥f∥p,T =
(∫ T

0

∫
Rd

|f(s, x)|pdsdx
)1/p

< +∞

for some p > d+ 2. Then a function h(s, x, t, y) defined for 0 ≤ s < t ≤ T, x ∈ Rd and
y ∈ Rd by the integral

h(s, x, t, y) =

∫ t

s

dτ

∫
Rd

h1(s, x, τ, z)h2(τ, z, t, y)f(τ, z)dz

belongs to the class HT (C∥f∥p,T , µ, β), where β = β1 + β2 − (d+ 2)/2q,

C = C1C2(
π

µq
)d/2q[B(

1

2
(d+ 2)− qβ1,

1

2
(d+ 2)− qβ2)]

1/q, q = p/(p− 1)

(B(γ, δ) means Euler’s beta-function).
We now apply the method of successive approximations for solving the second equation

in (4). We put G0(s, x, t, y) = g(s, x, t, y) and for k ≥ 1

Gk(s, x, t, y) =

∫ t

s

dτ

∫
Rd

Gk−1(s, x, τ, z)(a(τ, z),∇zg(τ, z, t, y))dz.
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Remind that the given functions a and b are assumed to satisfy the conditions formulated
at the very beginning of this section. Using Lemma 1 and induction on k, we arrive at
the following estimation

|Gk(s, x, t, y)| ≤ L
[ Γ(γq + q/2)

Γ((k + 1)γq + q/2)

]1/q
Mk(t− s)−d/2+kγ exp

{
− µ|y − x|2

t− s

}
(6)

valid for all 0 ≤ s < t ≤ T, x ∈ Rd, y ∈ Rd and k = 0, 1, . . . , where q = p/(p − 1), γ =
(p − d − 2)/2p, M = L∥a∥p,T [Γ(γq)( π

µq )
d/2]1/q and the positive constants µ and L are

taken from the inequalities (see Theorem 1 in Lesson 3)

g(s, x, t, y) ≤ L(t− s)−d/2 exp{−µ|y − x|2/(t− s)},

|∇xg(s, x, t, y)| ≤ L(t− s)−(d+1)/2 exp{−µ|y − x|2/(t− s)}.
As a consequence of these calculations we have the following statement.
Theorem 2. If a given Rd-valued function (a(s, x))(s,x)∈DT

is measurable and sat-

isfies inequality (5) for some number p > d + 2 and a given L+(Rd)-valued function
(b(s, x))(s,x)∈DT

satisfies the conditions (i) – (ii) of Lesson 3, then the second equation
in (4) has a solution

G(s, x, t, y) =

∞∑
k=0

Gk(s, x, t, y) (7)

that belongs to the class HT (N,µ,
d
2 ) with some constants N > 0 and µ > 0. Moreover,

in that class the solution constructed is unique.
Remark. As for the first equation in (4), it should be first transformed into an

integral equation for the function G′
x(s, x, t, y), 0 ≤ s < t ≤ T, x ∈ Rd and y ∈ Rd and

then be solved by the method of successive approximations in a way similar to that for
proving Theorem 2. After that the function G′

x constructed as the sum of a series like
(7) should be substituted into the first equation in (4) in order to obtain the solution of
it.

Exercise 4.3.A. Make sure that the solution of each equation in (4) coincides with
the solution of the other one.

We now have to answer the following questions:
(a) is it true or not that the function G in Theorem 2 can serve as transition probability

density of a Markov process in Rd ?
(b) if “yes”, is that process a diffusion one in the sense of Kolmogorov?
To answer these questions, we show that the solution G of each one of equation (4)

can be approximated with classical fundamental solutions of equation (3).
For fixed p > d+2, let Ap be a class of functions (a(s, x))(s,x)∈DT

with their values in

Rd such that supa∈Ap
∥a∥p,T < ∞. For k ∈ {1, 2}, let ak be a function from Ap. Denote

by Gk for k ∈ {1, 2} the solution of each one of equations (4) constructed in Theorem 2
for the function ak, k = 1, 2.

Lemma 2. The function G1(s, x, t, y)−G2(s, x, t, y), 0 ≤ s < t ≤ T, x ∈ Rd, y ∈ Rd

belongs to the class HT (C∥a1 − a2∥p,T , µ, d2 − γ), where the constant C depends only on

T, d, p, µ and supa∈Ap
∥a∥p,T , the constant γ = p−d−2

2p is as above and the constant µ is

such as in Theorem 1 of Lesson 3.
Fix a number p > d + 2 and let an Rd-valued function (a(s, x))(s,x)∈DT

be such that
∥a∥p,T < +∞. Some sequence of functions (an(s, x))s,x∈D, n = 1, 2, . . . , can be chosen
such that
α) supn≥1 ∥an∥p,T < ∞; β) ∥a − an∥p,T → 0, as n → ∞; γ) for fixed n ≥ 1,

the function an satisfies the condition (iii) of Lesson 3. Denote by G(s, x, t, y) and
Gn(s, x, t, y) for 0 ≤ s < t ≤ T, x ∈ Rd, y ∈ Rd and n = 1, 2, . . . the functions constructed
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in Theorem 2 for the functions a and an, respectively. In accordance with Lemma 2, we
have the inequality

|G(s, x, t, y)−Gn(s, x, t, y)| ≤ C∥an − a∥p,T (t− s)−
d
2+γ exp{−µ |y − x|2

t− s
}

valid for all n ≥ 1, 0 ≤ s < t ≤ T, x ∈ Rd and y ∈ Rd, where C is some positive
constant. Taking into account that Gn is transition probability density of a classical
diffusion process, we arrive at the following statement.

Theorem 3. Let the conditions of Theorem 2 be fulfilled. Then the function G(s, x, t, y),
0 ≤ s < t ≤ T, x ∈ Rd, y ∈ Rd, defined by (7) can serve as transition probability density
of a continuous Markov process in Rd satisfying the following equalities∫

Rd

(y − x, θ)G(s, x, t, y)dy =

∫ t

s

dτ

∫
Rd

(a(τ, y), θ)G(s, x, τ, y)dy, (8)

∫
Rd

(y − x, θ)2G(s, x, t, y)dy =

∫ t

s

dτ

∫
Rd

(b(τ, y)θ, θ)G(s, x, τ, y)dy+

(9)

+2

∫ t

s

dτ

∫
Rd

(a(τ, y), θ)(y − x, θ)G(s, x, τ, y)dy

valid for all 0 ≤ s < t ≤ T, x ∈ Rd and θ ∈ Rd.
Exercise 4.3.B. Make sure that for any x ∈ Rd and s ∈ [0, T )

lim
t↓s

1

t− s

∫ t

s

dτ

∫
Rd

(a(τ, y), θ)(y − x, θ)G(s, x, τ, y)dy = 0, θ ∈ Rd.

As a consequence, we have the relation

lim
t↓s

1

t− s

∫
Rd

(y − x, θ)2G(s, x, t, y)dy = (b(s, x)θ, θ)

held true for all s ∈ [0, T ) and x ∈ Rd.
It is now evident that the relation14

lim
t↓s

1

t− s

∫
Rd

(y − x, θ)G(s, x, t, y)dy = (a(s, x), θ), s ∈ [0, T ], x ∈ Rd, θ ∈ Rd,

can be quaranteed in the case of continuous function a, as follows from (8).
Exercise 4.3.C. Prove that relation (8) implies the following one

lim
∆s↓0

∫ T

0

∫
Rd

φ(s, x)
[ 1

∆s

∫
Rd

(y − x, θ)G(s, x, s+∆s, y)dy
]
dsdx =

=

∫ T

0

∫
Rd

φ(s, x)(a(s, x), θ)dsdx (10)

valid for all real-valued functions φ being continuous and compactly supported on (0, T )×
Rd.

We have thus arrived at the conclusion: a Markov process in Rd with its transition
probability density G constructed in Theorem 2, in general, is not a dffusion process in
Kolmogorov’s sense. The drift vector of this process exists in some generalized sense
only, as relation (10) shows.

Remark. It is not difficult to observe that in all the arguments of this section, one
can put p = +∞. So, these results remain to be true for the function (a(s, x))(s,x)∈Rd

being measurable and bounded.
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4.4. Homogeneous processes. In the case where the local characteristics of a
diffusion process do not depend on time, the results of the previous section can be
obviously conformed to a homogeneous situation.

In particular, let an L+(Rd)-valued function (b(x))x∈Rd be given and let it satisfy
the conditions (i)–(ii) of Lesson 3. Denote by g(t, x, y) for t > 0, x ∈ Rd and y ∈ Rd

transition probability density of a diffusion process in Rd whose local characteristics are
given by the functions (a0(x))x∈Rd and (b(x))x∈Rd , where a0(x) ≡ 0. Let an Rd-valued
function (a(x))x∈Rd be now given. In order to construct transition probability density
G(t, x, y), t > 0, x ∈ Rd, y ∈ Rd, of a diffusion process in Rd with its local characteristics
given by the functions (a(x))x∈Rd and (b(x))x∈Rd , we should consider the following pair
of equations

G(t, x, y) = g(t, x, y) +

∫ t

0

dτ

∫
Rd

g(τ, x, z)(a(z), G′
z(t− τ, z, y))dz,

(40)

G(t, x, y) = g(t, x, y) +

∫ t

0

dτ

∫
Rd

G(τ, x, z)(a(z), g′z(t− τ, z, y))dz.

It turns out that there exists a solution to each one of these equations under the following
assumptions on a given Rd -valued function (a(x))x∈Rd

∥a∥p =
(∫

Rd

|a(x)|pdx
)1/p

<∞ (50)

for some p > d.More precisely, the following assertion has summarized the homogeneous
versions of the results expounded in the previous section.

Theorem 4. Let an L+(Rd)-valued function (b(x))x∈Rd be given and let it satisfy
the conditions (i)-(ii) of Lesson 3. If a given Rd-valued function (a(x))x∈Rd satisfies
the condition (50) for some p ∈ (d,+∞], then there exists the unique solution G(t, x, y),
t > 0, x ∈ Rd, y ∈ Rd, to each one of equations (40) satisfying the inequalities

G(t, x, y) ≤ Kt−
d
2 exp{−µ |y − x|2

t− s
},

|G′
x(t, x, y)| ≤ Kt−

d+1
2 exp{−µ |y − x|2

t− s
}

in each domain (t, x, y) ∈ (0, T ] × Rd × Rd for T < ∞ (the constant K may depend on
T ). That solution can serve as transition probability density of a homogeneous Markov
process in Rd possessing the following properties∫

Rd

(y − x, θ)G(t, x, y)dy =

∫ t

0

dτ

∫
Rd

(a(y), θ)G(τ, x, y)dy,∫
Rd

(y − x, θ)2G(t, x, y)dy =

∫ t

0

dτ

∫
Rd

(b(y)θ, θ)G(τ, x, y)dy+

+2

∫ t

0

dτ

∫
Rd

(a(y), θ)(y − x, θ)G(τ, x, y)dy,

where t > 0, x ∈ Rd and θ ∈ Rd.
Clearly, this process is a diffusion one in the Kolmogorov sense if (a(x))x∈Rd is a

continuous function. In the general case (that is, only condition (50) is supposed to be
fulfilled), the relation

lim
t↓0

∫
Rd

φ(x)
[1
t

∫
Rd

(y − x, θ)G(t, x, y)dy
]
dx =

∫
Rd

a(x)φ(x)dx

holds true for any continuous compactly supported function (φ(x))x∈Rd .
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Exercise 4.4.A. Make sure that under the conditions of Theorem 4, the method
of successive approximations is applicable to each one of equations (40); construct the
function G in a way like the series (7).

Exercise 4.4.B. Let (x(t),Mt,Pa,b
x ) be a continuous homogeneous Markov process

in Rd whose transition probability density G(t, x, y), t > 0, x ∈ Rd, y ∈ Rd, is determined
by equations (40). Suppose that the space of elementary events of this process coincides
with all continuous Rd-valued functions (see Lesson 1). Denote by (x(t),Mt,P0,b

x ) a
continuous homogeneous Markov process with its transition probability density given by
the function g(t, x, y), t > 0, x ∈ Rd, y ∈ Rd and let its space of elementary events be the
same as above.

Prove that for all x ∈ Rd and T < +∞, the restrictions of the measures Pa,b
x and P0,b

x

on the σ-algebra MT are equivalent in the cases: (a) d ≥ 2 and ∥a∥p < ∞ for some
p > d; (b) d = 1 and ∥a∥p <∞ for some p ≥ 2. Those restrictions are not equivalent in

the case of ∥a∥p <∞ for some p ∈ (1, 2), but
∫ N

−N
|a(x)|2dx = +∞ for some N > 0.

4.5. Comments and references. The results of this section are expounded in
details in the book [8].

Lesson 5. Diffusion processes in a medium with membranes
located on given surfaces.

5.1. Introduction. In this lesson we show how to construct a continuous ho-
mogeneous Markov process in Rd with its diffusion operator being identically equal
to an identity operator in Rd and its drift vector given by a function of the form
(ν(x)q(x)δS(x))x∈Rd , where S is a given hypersurface in Rd, (δS(x))x∈Rd is a generalized
function whose action on a test function (φ(x))x∈Rd is defined by ⟨δS , φ⟩ =

∫
S
φ(x)dσ

(this is a surface integral), ν(x) for x ∈ S is a unit vector being orthogonal to S at
the point x and (q(x))x∈S is a given continuous function with its values in the interval
[−1, 1]. It is clear that such a process cannot be a diffusion one in the Kolmogorov sense.
Nevertheless, its local characteristics do exist in some generalized sense. In Lessons 1
and 2 we have already delt with some examples of the kind: in the case of d = 1, S is
reduced to the point (S = {0}) and the corresponding process is called skew Brownian
motion; if d ≥ 2 and S is a hyperplane in Rd, then the corresponding process is called
multidimensional Brownian motion with a membrane located on that given hyperplane,
and its transition probability density is given by an explicit formula.

5.2. Single–layer potentials. Suppose that S is a closed bounded hypersurface
separating Rd(d ≥ 2) into two open parts: the interior Di and the exterior De, so that
Rd = Di∪De∪S. Assume that there exists the unique tangent plane at each point x ∈ S.
Let ν(x) be the unit outer normal vector to S at x. For x ∈ S we construct a so-called
local system of coordinates, i.e., a rectangular system of coordinates (y1, y2, . . . , yd) with
the origin at x and with the direction of the axis yd along ν(x). It is assumed that for
some r0 > 0 and each x ∈ S the piece of surface Sr0(x) = S ∩Br0(x) can be given in the
local system of coordinates (with the origin at x) by an equation

yd = F (y1, y2, . . . , yd−1),

where F is a single-valued function. Recall that S is called a surface of class H1+δ

for some δ ∈ (0, 1] if for every x ∈ S the corresponding function F has in the domain∑d−1
j=1(y

j)2 ≤ r20
4 continuous partial derivatives ∂F

∂yk , k = 1, 2, . . . , d− 1, satisfying in this

domain a Hölder condition with exponent δ and a constant independent of x. It will
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be assumed below that the closed hypersurface S belongs to the class H1+δ for some
δ ∈ (0, 1].

To simplify the further exposition, we assume that a diffusion process to be perturbed
is Brownian motion in Rd, that is, a continuous homogeneous Markov process in Rd with
its transition probability density given by

g(t, x, y) = (2πt)−d/2 exp{−|y − x|2

2t
}, t > 0, x ∈ Rd, y ∈ Rd.

For a given real-valued measurable function (φ(t, x))(t,x)∈(0,T ]×S satisfying the inequality

|φ(t, x)| ≤ KT t
β , t ∈ (0, T ], x ∈ S, (1)

with some constants β > −1 and KT > 0 (KT is used to denote various constants),
define a function Φ(t, x) for (t, x) ∈ DT by the integrals

Φ(t, x) =

∫ t

0

dτ

∫
S

g(t− τ, x, y)φ(τ, y)dσy, (2)

where the inner integral is a surface one. The fact that the integrals in (2) are well-
defined is a consequence of the following evident estimation∫

S

g(t, x, y)dσy ≤ KT t
−1/2, (t, x) ∈ (0, T ]× Rd. (3)

This inequality allows us to assert that the function (Φ(t, x))(t,x)∈(0,T ]×Rd is continuous
and satisfies the inequality

|Φ(t, x)| ≤ KT t
β+1/2, t ∈ (0, T ], x ∈ Rd.

Moreover, one can easily observe that in the domain t ∈ (0, T ], x /∈ S, the function Φ
satisfies the heat equation

∂Φ

∂t
=

1

2
∆Φ.

Now, for x /∈ S and x0 ∈ S (t > 0 is fixed), the derivative of the function Φ(t, x) in
the direction ν(x0) is well-defined and can be written as follows

∂Φ(t, x)

∂ν(x0)
=

∫ t

0

dτ

∫
S

(y − x, ν(x0))

t− τ
g(t− τ, x, y)φ(τ, y)dσy.

The behavior of this derivative, as x → x0, is described by the following theorem
on the normal derivative of a single-layer potential. This theorem is one of the most
beautiful theorems of classical analysis.

It turns out that the limit of this derivative depends on the way the point x is ap-
proaching the point x0 ∈ S. If a given function (h(s, x))(s,x)∈DT

has the limit, as x→ x0
along an arbitrary curve lying in some finite closed cone K in Rd with vertex at x0 such
that K ⊂ Di ∪ {x0}, then we say that the function (h(s, x))(s,x)∈DT

has a non-tangent
inner limit at the point x0 ∈ S, and it is denoted by h(s, x0−). A non-tangent outer
limit is defined analogously, but this time the inclusion K ⊂ De∪{x0} must be held, and
h(s, x0+) is the designation for this limit.

One more remark should be made before formulating the theorem. If the hypersurface
S belongs to the class H1+δ, then for x0 ∈ S and y ∈ S ∩ Br0/2(x0), the inequality

|(y−x0, ν(x0))| ≤ const ·|y−x0|1+δ holds true. As a consequence, we have the following
estimation∫ t

0

dτ

∫
S

∣∣∣∂g(t− τ, x0, y)

∂ν(x0)
· φ(τ, y)

∣∣∣dy ≤ const

∫ t

0

(t− τ)−1+ δ
2 τβdτ = const ·tβ+ δ

2 (4)
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valid for t ∈ (0, T ], x0 ∈ S and any measurable function (φ(τ, y))(τ,y)∈(0,T ]×S satisfying
inequality (1). The function∫ t

0

dτ

∫
S

∂g(t− τ, x0, y)

∂ν(x0)
φ(τ, y)dy, t ∈ (0, T ], x0 ∈ S,

is called the direct value of the normal derivative ∂Φ(t,x)
∂ν(x0)

at the point x = x0. The fact

that this function is well-defined follows from (4).
Theorem 1. If a closed bounded hypersurface S belongs to the class H1+δ, and the

function (φ(t, x))(t,x)∈(0,T ]×S is continuous and satisfies inequality (1), then for t ∈ (0, T ]
and x0 ∈ S

∂Φ

∂ν(x0)
(t, x0±) = ∓φ(t, x0) +

∫ t

0

dτ

∫
S

∂g(t− τ, x0, y)

∂ν(x0)
φ(τ, y)dσy.

This statement is known as the theorem on the jump of the normal derivative of a
single-layer potential.

The version of this theorem for S being a hyperplane in Rd(d ≥ 2) is particularly
simple: since

∂g(t, x, y)

∂ν
=

(y − x, ν)

t
g(t, x, y) = 0, t > 0, x ∈ S, y ∈ S,

where ν is a unit vector normal to S, we have the relations

lim
x→x0±

∫ t

0

dτ

∫
S

∂g(t− τ, x, y)

∂νx
φ(τ, y)dσy = ∓φ(t, x0), t > 0, x0 ∈ S,

valid for any continuous function φ(t, y), t > 0, y ∈ S, satisfying condition (1) (index x
at the letter ν indicates the argument with respect to which the derivative ∂

∂ν is taken).
If d = 1 (S = {0}), then a simple-layer potential can be written as follows

Φ(t, x) =

∫ t

0

g(t− τ, x, 0)φ(τ)dτ, t > 0, x ∈ R1.

In this case the relations

lim
x→0±

∂Φ(t, x)

∂x
= ∓φ(t), t > 0,

hold true for any continuous function (φ(τ))τ>0 satisfying the condition
∫ ε

0
|φ(s)|ds <∞

for some (hence, for any) ε > 0.
5.3. The integral equations. Let a closed bounded hypersurface S in Rd (d ≥ 2)

be given such as in Theorem 1. Our starting point in this section is the following pair of
perturbation formulae (see equations (40) in the previous lesson)

G(t, x, y) = g(t, x, y) +

∫ t

0

dτ

∫
Rd

g(t− τ, x, z)(a(z), G′
z(τ, z, y))dz,

(5)

G(t, x, y) = g(t, x, y) +

∫ t

0

dτ

∫
Rd

G(t− τ, x, z)(a(z), g′z(τ, z, y))dz.

Recall that g(t, x, y) = (2πt)−d/2 exp{−|y − x|2/2t} for t > 0, x ∈ Rd and y ∈ Rd in this
lesson. We are going to put here a(x) = ν(x)q(x)δS(x), x ∈ Rd. One should first guess
that the function ( ∂G

∂ν(x0)
(t, x, y))x∈Rd for fixed t > 0, x0 ∈ S and y ∈ Rd must have a

jump at those points x0 ∈ S, where q(x0) ̸= 0.
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We have thus come to the conclusion that some sense to the product (ψ(x)δS(x))x∈Rd

must be attached in the case of a function (ψ(x))x∈Rd having non-tangent limits ψ(x0±)
at the points x0 ∈ S. We propose the following rule

⟨δS , ψ⟩ =
1

2

∫
S

[ψ(z+) + ψ(z−)]dσ.

According to this rule, the first equation in (5) can be rewritten as follows

G(t, x, y) = g(t, x, y) +

∫ t

0

dτ

∫
S

g(t− τ, x, z)V (τ, z, y)q(z)dσz, (6)

where

V (τ, z, y) =
1

2

[ ∂G

∂ν(z)
(τ, x, y)

∣∣∣
x=z+

+
∂G

∂ν(z)
(τ, x, y)

∣∣∣
x=z−

]
for τ > 0, z ∈ S and y ∈ Rd.

Similar reasonings concern the second equation in (5), but this time the function
(G(t, x, y))y∈Rd for fixed t > 0 and x ∈ Rd must have a jump at the point y ∈ S, where
q(y) ̸= 0. Hence, putting

Ṽ (t, x, z) =
1

2
[G(t, x, z+) +G(t, x, z−)]

for t > 0, x ∈ Rd and z ∈ S, we get

G(t, x, y) = g(t, x, y) +

∫ t

0

dτ

∫
S

Ṽ (t− τ, x, z)
∂g

∂ν(z)
(τ, z, y)q(z)dσz. (7)

Equation (6) shows that the function G is completely determined by the function V.
On the other hand, the integrals on the right-hand side of (6) are nothing else but a
single-layer potential. Applying Theorem 1 to (6), we get for t > 0, x ∈ S and y ∈ Rd

∂G

∂ν(x)
(t, x±, y) = ∂g

∂ν(x)
(t, x, y)∓ q(x)V (t, x, y)+

(8)

+

∫ t

0

dτ

∫
S

∂g

∂ν(x)
(t− τ, x, z)V (τ, z, y)q(z)dσz.

These equalities imply the integral equation for the function V (t, x, y), t > 0, x ∈ S, y ∈
Rd,

V (t, x, y) =
∂g(t, x, y)

∂ν(x)
+

∫ t

0

dτ

∫
S

∂g(t− τ, x, z)

∂ν(x)
V (τ, z, y)q(z)dσz. (9)

On the other hand, the relations

∂G

∂ν(x)
(t, x±, y) = (1∓ q(x))V (t, x, y) (10)

valid for t > 0, x ∈ S and y ∈ Rd, are also simple consequences of (8).
Now, taking into account the relations

∂g

∂ν(z)
(τ, z, y) = (ν(z), g′z(τ, z, y)) = −(ν(z), g′y(τ, z, y))

valid for τ > 0, z ∈ S and y ∈ Rd, and applying Theorem 1 once again, we get from (7)
the equalities

G(t, x, y±) = g(t, x, y)± q(y)Ṽ (t, x, y)+

+

∫ t

0

dτ

∫
S

Ṽ (t− τ, x, z)
∂g

∂ν(z)
(τ, z, y)q(z)dσz
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valid for t > 0, x ∈ Rd and y ∈ S. As a consequence, we have the integral equation for

Ṽ (t, x, y), t > 0, x ∈ Rd, y ∈ S

Ṽ (t, x, y) = g(t, x, y) +

∫ t

0

dτ

∫
S

Ṽ (t− τ, x, z)
∂g

∂ν(z)
(τ, z, y)q(z)dσz (11)

and also the relations

G(t, x, y±) = (1± q(y))Ṽ (t, x, y), t > 0, x ∈ Rd, y ∈ S. (12)

Our next step consists in constructing solutions to equations (9) and (11).
5.4. Solving equations (9) and (11). Denote by Q(t, x, y) for t > 0, x ∈ S, and

y ∈ S the restriction of the function
∂g(t, x, y)

∂ν(x)
on the set (0,+∞)× S × S. Making use

of the inequality |(y−x, ν(x))| ≤ const |y−x|1+δ valid for all x ∈ S and y ∈ S with some
constant depending on S only (recall that the bounded closed surface S belongs to the
class H1+δ with some δ ∈ (0, 1]), we can estimate the function Q as follows

|Q(t, x, y)| ≤ const ·t−
d+2
2 |y − x|1+δ exp{−|y − x|2/2t} ≤ L

tκ |y − x|d+1−2κ−δ
, (13)

where κ can be arbitrarily chosen from the interval (1 − δ
2 , 1) and L is some positive

constant depending on S and κ. Such a choice of κ implies the inequalities d+1−2κ−δ <
d− 1, 2κ + δ − 2 > 0. We put ρ = d+ 1− 2κ − δ, γ = 2κ + δ − 2 and σ = 1− κ; then
γ > 0 and σ > 0.

Let us now define a sequence of functions (Q(k))k≥1 given on the set (0,+∞)× S × S

by setting Q(1) = Q and

Q(k+1)(t, x, y) =

∫ t

0

dτ

∫
S

Q(τ, x, z)Q(k)(t− τ, z, y)q(z)dσz,

where (q(z))z∈S is a fixed real-valued continuous function (we will use the notation
∥q∥ = maxz∈S |q(z)|). It is evident that

Q(k+1)(t, x, y) =

∫ t

0

dτ

∫
S

Q(k)(τ, x, z)Q(t− τ, z, y)q(z)dσz

for all t > 0, x ∈ S, and y ∈ S. Making use of estimation (13) and Lemma 2 from [12]
(see Ch.V. §2), we get for (t, x, y) ∈ (0, T ]× S × S

|Q(2)(t, x, y)| ≤ const

tκ−σ|y − x|ρ−γ
, |Q(3)(t, x, y)| ≤ const

tκ−2σ|y − x|ρ−2γ
.

Therefore, an integer k0 exists such that |Q(k0)(t, x, y)| ≤ CT for all (t, x, y) ∈ (0, T ]×S×S
with some constant CT > 0. Then by induction on n, we arrive at the estimation

|Q(n+k0)(t, x, y)| ≤ Cn
T

tn−κ

(1− κ)(2− κ) . . . (n− κ)
valid for all (t, x, y) ∈ [0, T ]×S ×S and n = 1, 2, . . . . We have thus proved the following
assertion.

Lemma 1. The series

R(t, x, y) =

∞∑
k=1

Q(k)(t, x, y)

is convergent uniformly in x ∈ S and y ∈ S and locally uniformly in t > 0. The kernel R
is continuous in the arguments t > 0, x ∈ S, y ∈ S, y ̸= x, and satisfies the inequality

|R(t, x, y)| ≤ KT

tκ1 |y − x|κ2
(14)
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in any domain of the form (0, T ] × S × S with some constants κ1 ∈ (0, 1) and κ2 ∈
(0, d − 1). In addition, this kernel is the solution to each one of the following pair of
integral equations (t > 0, x ∈ S, y ∈ S)

R(t, x, y) = Q(t, x, y) +

∫ t

0

dτ

∫
S

R(τ, x, z)Q(t− τ, z, y)q(z)dσz,

(15)

R(t, x, y) = Q(t, x, y) +

∫ t

0

dτ

∫
S

Q(τ, x, z)R(t− τ, z, y)q(z)dσz.

Finally, each equation in (15) has no more than one solution satisfying estimation (14).
Corollary. The solution to equation (9) can be given by

V (t, x, y) =
∂g(t, x, y)

∂ν(x)
+

∫ t

0

dτ

∫
S

R(τ, x, z)
∂g(t− τ, z, y)

∂ν(z)
q(z)dσz (16)

for t > 0, x ∈ S and y ∈ Rd; and the solution to equation (11) can be written as follows

Ṽ (t, x, y) = g(t, x, y) +

∫ t

0

dτ

∫
S

g(τ, x, z)R(t− τ, z, y)q(z)dσz (17)

for t > 0, x ∈ Rd, and y ∈ S.
Exercise 5.4.A. Make sure that substituting (16) into (6) leads us to the function G

being the same as the result of substituting (17) into (7).
We have thus obtained two different representations for the function G. Our nearest

aim is to show that under some additional assumptions on S, the function G is indeed
transition probability density of the process desired.

5.5. Properties of the function G. The assertions of this section are proposed to
the reader as exercises provided by some hints.

Denote by B(Rd) the Banach space of all real-valued measurable bounded functions
(φ(x))x∈Rd with the norm ∥φ∥ = supx∈Rd |φ(x)|. The designation C(Rd) is used for the
Banach space consisting of all continuous functions from B(Rd) with the same norm.

Notice that equality (16) implies the following estimation

|
∫
Rd

V (t, x, y)φ(y)dy| ≤ KT ∥φ∥t−1/2 (18)

valid for all t ∈ (0, T ], x ∈ S and φ ∈ B(Rd). So, if we put

u(t, x, φ) =

∫
Rd

G(t, x, y)φ(y)dy, t > 0, x ∈ Rd, φ ∈ B(Rd),

then for any T > 0, there exists a constant CT > 0 such that the inequality |u(t, x, φ)| ≤
CT ∥φ∥ holds true for all t ∈ (0, T ], x ∈ Rd and φ ∈ B(Rd).

Exercise 5.5.A. Verify that the function u(t, x, φ) defined above for t > 0, x ∈ Rd and
φ ∈ B(Rd) is a solution to the heat equation in any domain of the kind (t, x) ∈ (0, T ]×
(Di∪De) for all T > 0. In the case of φ ∈ C(Rd), the initial condition u(0+, x, φ) = φ(x)
is fulfilled at any point x ∈ Rd.

Hints. The first statement follows from the equality

u(t, x, φ) =

∫
Rd

g(t, x, y)φ(y)dy +

∫ t

0

dτ

∫
S

g(t− τ, x, z)q(z)
[ ∫

Rd

V (τ, z, y)φ(y)dy
]
dσz.

For proving the second one, make use of the equality∫
Rd

V (t, x, y)dy = 0, t > 0, x ∈ S.
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Exercise 5.5.B. Verify that for all t1 > 0, t2 > 0, x ∈ Rd and φ ∈ B(Rd), the following
relation

u(t1 + t2, x, φ) = u(t1, x, u(t2, ·, φ)) (19)

holds true.
Hint. Establish first the relation∫

Rd

V (s+ t, x, y)φ(y)dy =

∫
Rd

V (t, x, z)u(s, z, φ)dz

valid for all s > 0, t > 0, x ∈ S and φ ∈ B(Rd).
As follows from (12), the function G in its third argument is discontinuous. Let us

believe that G(t, x, y) = g(t, x, y) for all t > 0, x ∈ Rd and y ∈ S. Then a very simple
consequence of (19) is the relation

G(s+ t, x, y) =

∫
Rd

G(s, x, z)G(t, z, y)dz

valid for all s > 0, t > 0, x ∈ Rd and y ∈ Rd. In other words, the function G satisfies the
Kolmogorov–Chapman equation.

Exercise 5.5.C. Make sure that if φ ∈ B(Rd) and φ(x) ≥ 0 for all x ∈ Rd, then
u(t, x, φ) ≥ 0 for all t > 0 and x ∈ Rd (under some additional requirements on the
surface S, see below).

Hints. Show first that if φn ∈ B(Rd) for n = 1, 2, . . . and limn→∞ φn(x) = φ(x) for
all x ∈ Rd and supn ∥φn∥ < ∞, then limn→∞ u(t, x, φn) = u(t, x, φ). Consequently, it
suffices to prove that for any compactly supported function φ ∈ B(Rd) being smooth
enough, we have u(t, x, φ) ≥ 0 for all x ∈ Rd if only φ(x) ≥ 0 for all x ∈ Rd.

Now, let φ be a function on Rd compactly supported, twice continuously differentiable
and bounded along with its derivatives. Then the function u(t, x, φ), t > 0, x ∈ Rd,
possesses the following properties

(i) it satisfies the heat equation in the domain (0,+∞)× (Di ∪ De);
(ii) it satisfies the initial condition u(0+, x, φ) = φ(x), x ∈ Rd;
(iii) the following relations

∂u(t, x±, φ)
∂ν(x)

= (1∓ q(x))

∫
Rd

V (t, x, y)φ(y)dy (20)

hold true for all t > 0 and x ∈ S (see (10)).
Let φ(x) ≥ 0 for all x ∈ Rd. If for some T > 0, we have inf(t,x)∈[0,T ]×Rd u(t, x, φ) =

γ < 0, then there exists t0 ∈ (0, T ] and x0 ∈ Rd such that u(t0, x0, φ) = γ. It is not
difficult to comprehend that x0 ∈ S. Therefore the inequalities

∂u(t0, x0+, φ)

∂ν(x0)
≥ 0 and

∂u(t0, x0−, φ)
∂ν(x0)

≤ 0 (21)

are fulfilled.
We now show that under some additional assumptions on surface S, any equality is

not allowed in these inequalities.
Definition. We say that a point x ∈ S has the property of inner sphericity if there

exists a closed ball B ⊂ Di ∪ {x} such that x ∈ ∂B. The property of outer sphericity is
defined similarly.

The proof of the following assertion is based on Theorem 14 in [12], Chapter II, §5, in
which an essential role is played by the assumption about the sphericity property of the
points of S.

Lemma 2. Assume that the surface S belongs to the class H1+δ and, moreover, each
point x ∈ S has the property of both inner and outer sphericity. Then instead of (21),
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the strict inequalities

∂u(t0, x0+, φ)

∂ν(x0)
> 0 and

∂u(t0, x0−, φ)
∂ν(x0)

< 0 (22)

hold true.
Let us return to Exercise 5.5.C. Recall that the continuous function (q(x))x∈S was

supposed to take on its values from the interval [−1, 1]. But then relations (20) contradict
the ones in (22). This means that our supposition that γ < 0 is not true. In other words,
if φ(x) ≥ 0 for all x ∈ Rd, then also u(t, x, φ) ≥ 0 for all t > 0 and x ∈ Rd.

As a consequence of Exercises 5.5.A and 5.5.C, we have the following assertion.
Corollary. Under the assumptions of Lemma 2, the following inequality

|u(t, x, φ)| ≤ ∥φ∥ (23)

holds true for all t > 0, x ∈ Rd and φ ∈ B(Rd).
Taking into account now that

∫
Rd G(t, x, y)dy ≡ 1 (this follows from the equality∫

Rd V (t, x, y)dy = 0 valid for all t > 0 and x ∈ S), we can assert that the function G

can serve as transition probability density of a Markov process in Rd. The next exercise
proposes to prove that the continuity condition is fulfilled for this process.

Exercise 5.5.D. Suppose that conditions of Lemma 2 are fulfilled. Verify that the
inequality

sup
x∈Rd

∫
Rd

|y − x|4G(t, x, y)dy ≤ KT t
2 (24)

holds true for all t ∈ (0, T ] with some positive constant KT finite for T < +∞.
Hints. Show first that for fixed x0 ∈ Rd and T > 0, the inequality∫

Rd

|V (t, x, y)||y − x0|4dy ≤ KT (|x− x0|4 + t2)t−1/2

is valid for all t ∈ (0, T ] and x ∈ S. Deduce from this that∫
Rd

|y − x0|4G(t, x0, y)dy ≤ KT t
2+

+KT

∫ t

0

dτ

∫
S

(2π(t− τ))−d/2 exp
{
− |y − x0|2

2(t− τ)

}
[τ3/2 + |y − x0|4τ−1/2]dσy

and this implies (24).
The following statement summarizes the consideretions of this section.
Theorem 2. Let a closed bounded hypersurface S in Rd belong to the class H1+δ for

some δ > 0 and let every point of S possess the property of inner and outer sphericity.
Then there exists a continuous homogeneous Markov process (x(t),Mt,Px) in Rd whose
transition probability density is given by the function G(t, x, y), t > 0, x ∈ Rd, y ∈ Rd,
defined by equality (6) or (7) with a given continuous function (q(x))x∈S taking on its
values from the interval [−1, 1].

Exercise 5.5.E. Establish the relations∫
Rd

(y − x, θ)G(t, x, y)dy =

∫ t

0

dτ

∫
S

(ν(z), θ)Ṽ (τ, x, z)q(z)dσz

∫
Rd

(y − x, θ)2G(t, x, y)dy = t|θ|2 + 2

∫ t

0

dτ

∫
S

(ν(z), θ)(z − x, θ)Ṽ (τ, x, z)q(z)dσz

valid for t > 0, x ∈ Rd and θ ∈ Rd.
These relations imply the following assertion.
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Theorem 3. The Markov process in Theorem 2 is a diffusion process in the following
sense: for any continuous compactly supported function (φ(x))x∈Rd and θ ∈ Rd, the
relations

lim
t↓0

∫
Rd

φ(x)
[1
t

∫
Rd

(y − x, θ)G(t, x, y)dy
]
dx =

∫
S

(ν(y), θ)q(y)φ(y)dσy,

lim
t↓0

∫
Rd

φ(x)
[1
t

∫
Rd

(y − x, θ)2G(t, x, y)dy
]
dx = |θ|2

∫
Rd

φ(y)dy

hold true.
Section 5.6. Comments and references. The results of this lesson (and more

general ones) can be found in [16], [8].
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Lesson 6. Multidimensional Brownian motion with a membrane
being located on a given hyperplane and acting in an oblique

direction.
6.1. Introduction. Using the methods developped in the previous lessons, we now

show how to construct a diffusion process in Rd, d ≥ 2, such that its diffusion operator
coicides with an identity operator in Rd and its drift vector is given by the function
(N(x)δS(x))x∈Rd , where S is the hyperplane in Rd being orthogonal to a fixed unit vector
ν ∈ Rd; (N(x))x∈S is a given Rd-valued vector field on S; (δS(x))x∈Rd is a distribution
(a generalized function) on Rd whose action on a test function (φ(x))x∈Rd is given by
⟨δS , φ⟩ =

∫
S
φ(x)dσ (this is a surface integral, which, in fact, is the integral over Rd−1

with respect to the Lebesgue measure in Rd−1). If, in particular, N(x) = νq(x) for x ∈ S
with some continuous function (q(x))x∈S taking on its values from the interval [−1, 1],
then the process of this lesson is the one described in the Examples 1.4.D and 2.4.C
above. More precisely, the process of those examples is our starting point for further
perturbing it by the vector field (α(x)δS(x))x∈Rd , where α(x) = N(x)− νq(x) for x ∈ S.

6.2. An integro-differential equation for a diffusion perturbed. So, we are
given by a fixed unit vector ν ∈ Rd, d ≥ 2. Denote by S the subspace of Rd that is
orthogonal to ν : S = {x ∈ Rd : (x, ν) = 0}. The open half-spaces {x ∈ Rd : (x, ν) > 0}
and {x ∈ Rd : (x, ν) < 0} are denoted, respectively, by D+ and D−. Let continuous
functions (α(x))x∈S and (q(x))x∈S with their values, respectively, in S and the interval
[−1, 1] be given. We set N(x) = α(x) + νq(x) for x ∈ S.

Denote by g0(t, x, y) for t > 0, x ∈ Rd and y ∈ Rd transition probability density of
Brownian motion in Rd

g0(t, x, y) = (2πt)−d/2 exp{−|y − x|2/2t}.
By g(t, x, y) for t > 0, x ∈ Rd and y ∈ Rd, we denote transition probability density of the
process considered in Examples 1.4.D and 2.4.C above, that is

g(t, x, y) = g0(t, x, y) +

∫ t

0

dτ

∫
S

g0(t− τ, x, z)
(y, ν)

τ
g0(τ, z, y)q(z)dσz. (1)

Notice that the second item on the right-hand side of (1) is nothing else but taken with
the sign minus the normal derivative (in y) of a single-layer potential. According to
Section 5.2, we have the relations

g(t, x, y±) = (1± q(y))g0(t, x, y) (2)
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valid for t > 0, x ∈ Rd and y ∈ S (g(t, x, y+) means the non-tangent limit of g(t, x, z),
as z → y in such a way that z ∈ D+; g(t, x, y−) is defined by analogy, but this time
z ∈ D−).

Equalities (2) show that the condition ∥q∥ = supx∈S |q(x)| ≤ 1 is necessary for the
function g to take on only non-negative values. On the other hand, this condition is
sufficient for that, as the following inequalities show (see Example 1.4.D)

(1− ∥q∥)g0(t, x, y) ≤ g(t, x, y) ≤ (1 + ∥q∥)g0(t, x, y), t > 0, x ∈ Rd, y ∈ Rd.

As a function of the arguments (t, x) ∈ (0,+∞) × Rd (for fixed y ∈ Rd), the second
item on the right-hand side of (1) can be considered as a single-layer potential. Hence,
applying the main theorem of Section 5.2, we get the relations

∂g(t, z, y)

∂νz

∣∣∣
z=x±

= (1∓ q(x))
∂g0(t, x, y)

∂νx
(3)

valid for all t > 0, x ∈ S and y ∈ Rd.
It was an exercise for the reader to verify that the function g defined by (1) satis-

fies the Kolmogorov–Chapman equation and also the continuity condition of Lesson 1.
Having done that exercise, the reader must be sure that the function (1) determines a
diffusion process in Rd (in some generalized sense, see Example 2.4.C) with its diffu-
sion operator being an identity operator in Rd and its drift vector given by the function
(νq(x)δS(x))x∈Rd . Our aim now is to perturb this process by the S-valued vector field
(α(x)δS(x))x∈Rd .

To do this, we need some information about the partial derivatives of the function (1)
as a function of the argument x ∈ Rd. Relations (3) characterize such a derivative in the
direction ν. The following assertion contains some information about the corresponding
derivatives in directions lying in S (under some additional assumptions on the function
q).

Recall that an Rm-valued (m ≥ 1) function (f(x))x∈S is called Hölder continuous with
the exponent λ ∈ (0, 1] if

sup
x∈S,y∈S

x ̸=y

|f(x)− f(y)|
|x− y|λ

<∞. (4)

One more group of reminders: for x ∈ Rd, we make use of the designation x̃ for the
orthogonal projection of x on S (see Example 1.4.D); for given real numbers a and b, the
minimal one of them is denoted by a ∧ b.

Let β be an arbitrary unit vector in S. The derivative in the direction β of the function
(g(t, x, y))x∈Rd (for fixed t > 0 and y ∈ Rd) will be denoted by

∂g(t, x, y)

∂βx
= (β,∇xg(t, x, y)).

Lemma 1. Assume that the function (q(x))x∈S with its values in [−1, 1] is Hölder
continuous with the exponent λ ∈ (0, 1]. Then the function g defined by (1) as a function of

x ∈ Rd is differentiable in any direction β ∈ S (|β| = 1) and the derivative
∂g(t, x, y)

∂βx
(t >

0, x ∈ Rd, y ∈ Rd) satisfies the following relations:
(i)

∂g(t, x, y)

∂βx
=
∂g0(t, x, y)

∂βx
+ q(x̃) sign(y, ν) +

∂g0(t, x̃, ỹ)

∂βx
exp

{
− (|(x, ν)|+ |(y, ν)|)2

2t

}
+

+

∫ t

0

dτ

∫
S

∂g0(t− τ, x, ζ)

∂βx

∂g0(τ, ζ, y)

∂νζ
(q(ζ)− q(x̃))dσζ , t > 0, x ∈ Rd, y ∈ Rd;
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(ii) for any T ∈ (0,+∞), there exist constants C > 0 and µ > 0 (they may be chosen
independent of β ∈ S, |β| = 1) such that∣∣∣∂g(t, x, y)

∂βx

∣∣∣ ≤ Ct−
d+1
2 exp

{
− µ

|x− y|2

t

}
, t ∈ (0, T ], x ∈ Rd, y ∈ Rd;

(iii) for any T ∈ (0,+∞), there exist some constants C > 0 and µ > 0 such that the
inequality∣∣∣∂g(t, x, y)

∂βx
− ∂g(t, z, y)

∂βz

∣∣∣ ≤ C|x− z|λt−
d+1+λ

2 exp
{
− µ

t
[(|x− ỹ| ∧ [z − ỹ])2 + (y, ν)2]

}
holds true for all t ∈ (0, T ], x ∈ S, y ∈ Rd, z ∈ S, β ∈ S (|β| = 1).

Exercise 6.2.A. Prove all the statements of Lemma 1.
Hints. The integrals in the equality (i) are well-defined since (q(x))x∈S is Hölder

continuous; the validity of that equality can be easily verified. The estimate (ii) is a
simple consequence of (i) and the inequality in Theorem 1 from Lesson 3. Proving the
estimate (iii) is not a difficult thing for the reader having acquired knowledge of the
parametrix method for constructing fundamental solutions to parabolic equations (that
is, in proving the theorem just cited).

Together with the function (q(x))x∈S taking on its values from the interval [−1, 1], we
are given by an S-valued bounded function (α(x))x∈S . In what follows, they are both
supposed to be Hölder continuous with the exponent λ ∈ (0, 1). As mentioned above, our
aim is to construct a diffusion process in Rd with its diffusion operator being an identity
operator in Rd and its drift vector given by the function (α(x) + q(x)ν)δS(x), x ∈ Rd.

Denote by G(t, x, y) for t > 0, x ∈ Rd and y ∈ Rd transition probability density of
the process desired. In order to construct the function G, we make use of the first one of
equations (5) from the previous lesson. In that equation, the function g is now defined
by (1) (remind that for fixed t > 0 and x ∈ Rd, the function (g(t, x, y))y∈S coincides
with (g0(t, x, y))y∈S ) and the function (a(x))x∈Rd is now given by (α(x)δS(x))x∈Rd .
Introducing the notation V (τ, z, y) = (α(z),∇zG(τ, z, y)) for τ > 0, z ∈ S and y ∈ Rd

(this is an unknown function as well as the function G), we arrive at the following
integro-differential equation

G(t, x, y) = g(t, x, y) +

∫ t

0

dτ

∫
S

g0(t− τ, x, z)V (τ, z, y)dσz, (5)

where t > 0, x ∈ Rd and y ∈ Rd.
Suppose that the function (V (τ, z, y))z∈S for fixed τ > 0 and y ∈ Rd is Hölder contin-

uous and put

ψ(t, x, y) = (α(x),∇xg(t, x, y)),K(t, x, y) = (α(x),∇xg0(t, x, y))

for t > 0, x ∈ S and y ∈ Rd. Then equation (5) implies the following integral equation
for the function V

V (t, x, y) = ψ(t, x, y) +

∫ t

0

dτ

∫
S

K(t− τ, x, z)V (τ, z, y)dσz, (6)

where t > 0, x ∈ S and y ∈ Rd. Having solved this equation, one should then substitute
the solution into equation (5), in order to obtain transition probability density of the
process desired.

If we are not interested in the question whether that transition probability density
does exist, we can simplify our problem. Let us multiply both sides of (5) and (6) by an
arbitrary Borel measurable bounded function (φ(y))y∈Rd and integrate them over y ∈ Rd.
Putting

Ttφ(x) =

∫
Rd

G(t, x, y)φ(y)dy, (t, x) ∈ (0,+∞)× Rd,
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Vφ(t, x) =

∫
Rd

V (t, x, y)φ(y)dy, (t, x) ∈ (0,+∞)× S,

ψφ(t, x) =

∫
Rd

ψ(t, x, y)φ(y)dy, (t, x) ∈ (0,+∞)× S,

we get the following integral equation (t > 0, x ∈ S)

Vφ(t, x) = ψφ(t, x) +

∫ t

0

dτ

∫
S

K(t− τ, x, z)Vφ(τ, z)dσz (7)

and the relation for Ttφ(x), t > 0, x ∈ Rd

Ttφ(x) =

∫
Rd

g(t, x, y)φ(y)dy +

∫ t

0

dτ

∫
S

g0(t− τ, x, z)Vφ(τ, z)dσz. (8)

The problem now consists in solving equation (7). After that, one should show that
relation (8) determines the process desired.

6.3. Regularizing and solving equation (7). As in the previous lesson, we use
the notation B(Rd) for the Banach space of all real-valued bounded Borel measurable
functions (φ(x))x∈Rd with the norm ∥φ∥ = supx∈Rd |φ(x)| and C(Rd) for the closed
subspace of B(Rd) consisting of all continuous functions.

We are going to deal with equation (7) which is a Volterra integral equation of the
second kind. It is determined by the function ψφ(t, x), (t, x) ∈ (0,+∞)× S, φ ∈ B(Rd),
and the kernel K(t, x, y), (t, x) ∈ (0,+∞) × S, y ∈ Rd. According to Lemma 1, the
function ψφ processes the following properties:

a) for any T > 0, there exists a constant C > 0 such that |ψφ(t, x)| ≤ C∥φ∥t−1/2 for
all (t, x) ∈ (0, T ]× S and φ ∈ B(Rd);

b) for any T > 0. there exists a constant C > 0 such that |ψφ(t, x) − ψφ(t, z)| ≤
C∥φ∥t−(1+λ)/2|x− z|λ for all t > 0, x ∈ S, z ∈ S and φ ∈ B(Rd).

As for the kernel K, the following estimate is a simple consequence of the inequality
(ii) of Lemma 1:

for any T > 0, there exist constants C > 0 and µ > 0 such that

|K(t, x, z)| ≤ Ct−
d+1
2 exp{−µ|x− z|2/t}, t ∈ (0, T ], x ∈ S, z ∈ S.

Notice that this estimate does not allow one to conclude that this kernel has a weak
singularity (the integral operator in (7) acts in the space of functions defined on (0,+∞)×
S). Therefore, we cannot apply the method of successive approximation immediately to
equation (7): it must be first regularized.

With that end in view, introduce into considerations an integro-differential operator
E acting on a real-valued function f(t, x) ((t, x) ∈ (0,+∞) × S) in accordance with the
rule

Ef(t, x) = 2
{ ∂

∂t

∫ t

0

dτ

∫
S

f(τ, y)
[ ∫ ∞

0

h0(t− τ, ζ)h(t̂− τ, x+ ζα(y), y)dζ
]
dσy

}∣∣
t̂=t
,

where h0(t, ζ) = (2πt)−1/2 exp{−ζ2/2t} for t > 0 and ζ ∈ R1 and h(t, x, y) =
(2πt)−(d−1)/2 exp{−|y − x|2/2t} for t > 0, x ∈ S and y ∈ S.

Applying the operator E to equation (7) leads us to the following equation (t > 0,
x ∈ S)

Vφ(t, x) = ψ̃φ(t, x) +

∫ t

0

dτ

∫
S

K̃(t− τ, x, y)Vφ(τ, y)dσy, (9)

where ψ̃φ(t, x) for t > 0 and x ∈ S is given by the equality

ψ̃φ(t, x) = ψφ(t, x) + 2

∫ t

0

dτ

∫
S

ψφ(τ, ξ)dσξ

∫ ∞

0

∂h0(t− τ, ζ)

∂t
· (10)
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·[h(t− τ, x+ α(ξ)ζ, ξ)− h(t− τ, x+ α(x)ζ, ξ)]dζ + 2

∫ t

0

dτ

∫
S

[ψφ(τ, ξ)−

−ψφ(τ, x)]dσξ

∫ ∞

0

∂h0(t− τ, ζ)

∂t
h(t− τ, x+ α(x)ζ, y)dζ

and K̃(t− τ, x, y) for 0 < τ < t, x ∈ S and y ∈ S is defined by the formula

K̃(t− τ, x, y) =

= 2

∫ t

τ

ds

∫ ∞

0

∂h0
∂t

(t− s, ζ)dζ

∫
S

[h(t− s, x+ α(ξ)ζ, ξ)(α(ξ),∇ξg0(s− τ, ξ, y)− (11)

−h(t− s, x+ α(y)ζ, ξ)(α(y),∇ξg0(s− τ, ξ, y))]dσξ + (α(x)− α(y),∇xg0(t− τ, x, y)).

The following two exercises must be not difficult to those readers who have already
mastered the parametrix method for constructing fundamental solutions to parabolic
equations.

Exercise 6.3.A. Making use of representation (10), verify that the function ψ̃φ pos-
sesses the properties a) and b) above as well as the function ψφ does.

Exercise 6.3.B. Using formula (11), prove that for any T > 0 there exist some
constants C > 0 and µ > 0 such that the estimate

|K̃(t− τ, x, y)| ≤ C(t− τ)−(d+1−λ)/2 exp{−µ|y − x|2/(t− τ)} (12)

holds true for all 0 ≤ τ < t ≤ T, x ∈ S and y ∈ S.

Inequality (12) shows that the kernel K̃ has a weak singularity. Taking into account

additionally that the function ψ̃φ possesses the property a) (see Example 6.3.A), we
arrive at the conclusion that the method of successive approximations is applicable to
equation (9). As a result, we have the following statement.

Lemma 2. Let the function (q(x))x∈S with its values in the interval [−1, 1] and the
S-valued bounded function (α(x))x∈S be Hölder continuous with the exponent λ ∈ (0, 1).
Then for any φ ∈ B(Rd), there exists a solution Vφ(t, x), (t, x) ∈ (0,+∞)×S, of equation
(9) such that: α) Vφ is continuous with respect to its arguments and for any T < ∞ it
satisfies the inequality

|Vφ(t, x)| ≤ C∥φ∥t−1/2 (13)

for all (t, x) ∈ (0, T ] × S with some constant C > 0; β) there is only one solution
of equation (9) possessing the property α); γ) if a sequence {φn, n = 1, 2, . . .} of real-
valued Borel measurable functions (φn(x))x∈Rd is such that limn→∞ φn(x) = φ(x) for
all x ∈ Rd and supn≥1 ∥φn∥ < ∞, then limn→∞ Vφn(t, x) = Vφ(t, x) for all t > 0 and

x ∈ S; δ) let φ ∈ B(Rd) be such a function that its gradient (∇φ(x))x∈Rd is bounded and
Hölder continuous with the exponent λ ∈ (0, 1), then the restriction of Vφ on the domain
[0, T ] × S is Hölder continuous in the argument t ∈ [0, T ] and the argument x ∈ S with
the exponents λ/2 and λ, respectively.

Exercise 6.3.C. Prove all the assertions of Lemma 2.
Hints. Assertions α)−γ) easily follow from the construction of successive approxima-

tions for the solution Vφ of equation (9). The statement δ) is a consequence of Lemmas
1 and 2 in [17].

A question now arises, how does a solution of equation (9) is related to equation (7).
The proof of the following statement can be found in [17].

Lemma 3. The equations (7) and (9) are equivalent in the following sense: every
solution of (9) is also a solution of (7) and vice versa.

We have thus had a solution Vφ of equation (7) for an arbitrary φ ∈ B(Rd). Substitut-
ing it into relation (8), we obtain a family of linear operators (Tt)t>0 acting in the space
B(Rd). Estimate (13) implies the boundedness of those operators. Our nearest aim is
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to show that this family of operators determines a diffusion process in Rd (in the same
sense as in Lesson 5), the existence of which was declared in Introduction to this lesson.

6.4. Constructing the process desired. Taking into account assertion γ) of
Lemma 2, we can assert that limn→∞ Ttφn(x) = Ttφ(x) for all t > 0, x ∈ Rd and any
sequence {(φn(x))x∈Rd , n = 1, 2, . . .} of functions from B(Rd) such that supn≥1 ∥φn∥ <
+∞ and limn→∞ φn(x) = φ(x) at each x ∈ Rd. Introduce the notation u(t, x, φ) = Ttφ(x)
for t > 0, x ∈ Rd and φ ∈ B(Rd) and notice that this function is the sum of two potentials:
one of them is a volumetric heat potential and the other one is a single-layer potential
associated with transition probability density g.Well-known properties of those potentials
allow one to verify the following properties of the functions u(t, x, φ), t > 0, x ∈ Rd :

1) it is a continuous function of the arguments t > 0 and x ∈ Rd;
2) it satisfies the heat equation

∂u(t, x, φ)

∂t
=

1

2
∆u(t, x, φ)

in the region t > 0, x ∈ D+ ∪ D−;
3) for each φ ∈ C(Rd), it satisfies the initial condition

u(0+, x, φ) = φ(x)

at any point x ∈ Rd;
4) it satisfies the boundary condition

∂u(t, x, φ)

∂α(x)
+

1 + q(x)

2

∂u(t, z, φ)

∂ν

∣∣∣
z=x+

− 1− q(x)

2

∂u(t, z, φ)

∂ν

∣∣∣
z=x−

= 0

for all t > 0, x ∈ S and φ ∈ B(Rd).
The uniqueness of a solution to this problem follows from the book [12] (see Chapter

II, §5). As a consequence of this, we have the relation

u(s+ t, x, φ) = u(t, x, u(s, ·, φ))
valid for all s > 0, t > 0, x ∈ Rd and φ ∈ B(Rd). In addition, u(t, x, φ0) ≡ 1 for t > 0,
where φ0(x) ≡ 1. Finally, if φ ∈ B(Rd) is such that φ(x) ≥ 0 for all x ∈ Rd, then
u(t, x, φ) ≥ 0 for all t > 0 and x ∈ Rd.

All these properties lead us to the conclusion that there exists transition probability
P (t, x, dy) in (Rd,B) such that

u(t, x, φ) =

∫
Rd

φ(y)P (t, x, dy), t > 0, x ∈ Rd, φ ∈ B(Rd).

The fact that there is an integral representation for the function u(t, x, φ), t > 0, x ∈ Rd

and φ ∈ B(Rd) (see (7) and (8)) must help to the reader to cope with the following
exercises (compare with Exercises 5.5.D and 5.5.E).

Exercise 6.4.A. Make sure that for any T > 0, there exists a constant C > 0 such
that the inequality ∫

Rd

|y − x|4P (t, x, dy) ≤ Ct2

holds true for all t ∈ (0, T ] and x ∈ Rd.
Exercise 6.4.B. Verify that for any compactly supported function φ ∈ C(Rd) and

any θ ∈ Rd, the following relations (remind that N(x) = α(x) + q(x)ν for x ∈ S)

lim
t↓0

1

t

∫
Rd

φ(x)
[ ∫

Rd

(y − x, θ)P (t, x, dy)
]
dx =

∫
S

(N(x), θ)φ(x)dσx,

lim
t↓0

1

t

∫
Rd

φ(x)
[ ∫

Rd

(y − x, θ)2P (t, x, dy)
]
dx = |θ|2

∫
Rd

φ(x)dx

are fulfilled.
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As a summation of the considerations of this lesson, we have the following result.
Theorem. Let a bounded S-valued function (α(x))x∈S and a function (q(x))x∈S

with its values in the interval [−1, 1] be given such that they both are Hölder contin-
uous with some exponent λ ∈ (0, 1). Then there exists a continuous Markov process
(x(t),Mt,Px) in Rd being a diffusion one (in a generalized sense) with its diffusion
operator given by an identity operator in Rd and its drift vector given by the function
((α(x) + q(x)ν)δS(x))x∈Rd .

Exercise 6.4.C. Try to construct the generalized diffusion process of this lesson
making use of the second one of equations (5) from the previous lesson.

6.5. Comments and references. This lesson contains the results (with some
modifications) of the paper [17].
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